Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 1;11(48):13008-13014.
doi: 10.1039/d0sc05133k.

Cross dehydrogenative C-O coupling catalysed by a catenane-coordinated copper(i)

Affiliations

Cross dehydrogenative C-O coupling catalysed by a catenane-coordinated copper(i)

Lihui Zhu et al. Chem Sci. .

Abstract

Catalytic activity of copper(i) complexes supported by phenanthroline-containing catenane ligands towards a new C(sp3)-O dehydrogenative cross-coupling of phenols and bromodicarbonyls is reported. As the phenanthrolines are interlocked by the strong and flexible mechanical bond in the catenane, the active catalyst with an open copper coordination site can be revealed only transiently and the stable, coordinatively saturated Cu(i) pre-catalyst is quickly regenerated after substrate transformation. Compared with a control Cu(i) complex supported by non-interlocked phenanthrolines, the catenane-supported Cu(i) is highly efficient with a broad substrate scope, and can be applied in gram-scale transformations without a significant loss of the catalytic activity. This work demonstrates the advantages of the catenane ligands that provide a dynamic and responsive copper coordination sphere, highlighting the potential of the mechanical bond as a design element in transition metal catalyst development.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Comparison of a Cu(i) catalysts supported by a catenane ligand (top) and non-interlocked ligands (bottom). For complexes supported by catenane ligands, the stable resting state can change its coordination environment for substrate transformation and be regenerated by facile intramolecular coordination of the dissociated ligand. On the other hand, re-coordination of dissociated ligand that is non-interlocked will be kinetically less favourable. Empty coordination sites created after ligand dissociation may be filled by solvents and bi/multinuclear complexes could be formed. The active complex may be more susceptible to side reactions with a shorter lifetime.
Scheme 1
Scheme 1. Control reactions for studying possible intermediates involved in the CDC: (a) phenol (1a) was replaced by diethyl phenoxymalonate (3a′) that showed the formation of CDC product is preceded by a SN reaction; (b) diethyl bromomalonate (2a) was replaced by diethyl dibromomalonate (2a′) that showed the CDC did not involve disproportionation of 2a; (c) 1 eq. of TEMPO was added that showed the CDC catalysed by the catenane-supported Cu(i) could involve a radical species.
Fig. 2
Fig. 2. Proposed mechanisms of CDC catalysed by [Cu(L1)]PF6 (above) and [Cu(L5)2]PF6 (below).
Fig. 3
Fig. 3. Conversion of the CDC product 3e to imidazo[1,2-b]pyridazine 5.

Similar articles

Cited by

References

    1. For selected reviews, see:

    2. Evano G. and Blanchard N.Copper Mediated Cross-Coupling Reactions, John Wiley & Sons Inc., New Jersey, 2013
    3. Beletskaya I. P. Cheprakov A. V. Coord. Chem. Rev. 2004;248:2337. doi: 10.1016/j.ccr.2004.09.014. - DOI
    4. Evano G. Blanchard N. Toumi M. Chem. Rev. 2008;108:3054. doi: 10.1021/cr8002505. - DOI - PubMed
    5. Prokopcova H. Kappe C. O. Angew. Chem., Int. Ed. 2008;47:3674. doi: 10.1002/anie.200800449. - DOI - PubMed
    6. Surry D. S. Buchwald S. L. Chem. Sci. 2010;1:13. doi: 10.1039/C0SC00107D. - DOI - PMC - PubMed
    7. Evano G. Theunissen C. Pradal A. Nat. Prod. Rep. 2013;30:1467. doi: 10.1039/C3NP70071B. - DOI - PubMed
    8. Casitas A. Ribas X. Chem. Sci. 2013;4:2301. doi: 10.1039/C3SC21818J. - DOI
    9. Bhunia S. Pawar G. G. Kumar S. V. Jiang Y. Ma D. Angew. Chem., Int. Ed. 2017;56:16136. doi: 10.1002/anie.201701690. - DOI - PubMed
    10. Hossain A. Bhattacharyya A. Reiser O. Science. 2019;364:eaav9713. doi: 10.1126/science.aav9713. - DOI - PubMed
    1. McMillin D. R. McNett K. M. Chem. Rev. 1998;98:1201. doi: 10.1021/cr9601167. - DOI - PubMed
    2. Li S.-J. Lan Y. Chem. Commun. 2020;56:6609. doi: 10.1039/D0CC01946A. - DOI - PubMed
    3. Himmel H.-J. Inorg. Chim. Acta. 2018;481:56. doi: 10.1016/j.ica.2017.07.069. - DOI
    1. Clark A. J. Eur. J. Org. Chem. 2016:2231. doi: 10.1002/ejoc.201501571. - DOI
    2. Pintauer T. Matyjaszewski K. Chem. Soc. Rev. 2008;37:1087. doi: 10.1039/B714578K. - DOI - PubMed
    3. Eckenhoff W. T. Pintauer T. Catal. Rev. 2010;52:1. doi: 10.1080/01614940903238759. - DOI
    1. For examples of phenanthroline-supported, coordinatively saturated copper-based coupling catalysts:

    2. Hossain A. Engl S. Lutsker E. Reiser O. ACS Catal. 2019;9:1103. doi: 10.1021/acscatal.8b04188. - DOI
    3. Rawner T. Lutsker E. Kaiser C. A. Reiser O. ACS Catal. 2018;8:3950. doi: 10.1021/acscatal.8b00847. - DOI
    1. Jones G. R. Anastasaki A. Whitfield R. Engelis N. Liarou E. Haddleton D. M. Angew. Chem., Int. Ed. 2018;57:10468. doi: 10.1002/anie.201802091. - DOI - PubMed
    2. Wendlandt A. E. Suess A. M. Stahl S. S. Angew. Chem., Int. Ed. 2011;50:11062. doi: 10.1002/anie.201103945. - DOI - PubMed
    3. Trammell R. Rajabimoghadam K. Garcia-Bosch I. Chem. Rev. 2019;119:2954. doi: 10.1021/acs.chemrev.8b00368. - DOI - PMC - PubMed
    4. Iwamatsu S. Matsubara K. Nagashima H. J. Org. Chem. 1999;64:9625. doi: 10.1021/jo9912146. - DOI