Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 19;11(48):13079-13084.
doi: 10.1039/d0sc04136j.

Direct, stereoselective thioglycosylation enabled by an organophotoredox radical strategy

Affiliations

Direct, stereoselective thioglycosylation enabled by an organophotoredox radical strategy

Peng Ji et al. Chem Sci. .

Abstract

While strategies involving a 2e- transfer pathway have dictated glycosylation development, the direct glycosylation of readily accessible glycosyl donors as radical precursors is particularly appealing because of high radical anomeric selectivity and atom- and step-economy. However, the development of the radical process has been challenging owing to notorious competing reduction, elimination and/or SN side reactions of commonly used, labile glycosyl donors. Here we introduce an organophotocatalytic strategy through which glycosyl bromides can be efficiently converted into corresponding anomeric radicals by photoredox mediated HAT catalysis without a transition metal or a directing group and achieve highly anomeric selectivity. The power of this platform has been demonstrated by the mild reaction conditions enabling the synthesis of challenging α-1,2-cis-thioglycosides, the tolerance of various functional groups and the broad substrate scope for both common pentoses and hexoses. Furthermore, this general approach is compatible with both sp2 and sp3 sulfur electrophiles and late-stage glycodiversification for a total of 50 substrates probed.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Selected examples of thioglycosides with α-1,2-cis-configuration.
Scheme 2
Scheme 2. Ionic and radical thioglycosylation.
Scheme 3
Scheme 3. Scope of thiosulfonates. aReaction conditions: unless specified, see footnote a of Table 1 and the ESI; isolated yield; the ratio of α and β anomers determined by crude 1H NMR. bYield after hydrolysis of the acyl group. cDisulfide used. dToluenethiosulfonate used. eZ/E ratio determined by 1H NMR.
Scheme 4
Scheme 4. Scope of saccharides and selenoglycosylation. aReaction conditions: unless specified see footnote a of Table 1 and the ESI; isolated yield; the ratio of α and β anomers determined by crude 1H NMR. b3.0 equiv. of glycosyl bromide used. cDisulfide used.
Scheme 5
Scheme 5. Thiodiversification of pharmaceutically relevant structures. aReaction conditions: unless specified, see footnote a of Table 1 and the ESI; isolated yield; ratio of α and β anomers determined by crude 1H NMR. bThe product after hydrolysis. cMethylthiosulfonate used. dDCE : H2O (1.5 mL, 2 : 1, v/v) used as the solvent.
Scheme 6
Scheme 6. Proposed mechanism and mechanism studies.

Similar articles

Cited by

References

    1. Rudd P. M. Elliot T. Cresswell P. Wilson I. A. Dwek R. A. Science. 2001;291:2370. doi: 10.1126/science.291.5512.2370. - DOI - PubMed
    2. Davis B. G. Chem. Rev. 2002;102:579. doi: 10.1021/cr0004310. - DOI - PubMed
    3. Doores K. J. Gamblin D. P. Davis B. G. Chem.–Eur. J. 2006;12:656. doi: 10.1002/chem.200500557. - DOI - PubMed
    4. Lowe J. B. Cell. 2001;104:809. doi: 10.1016/S0092-8674(01)00277-X. - DOI - PubMed
    1. Thayer D. A. Yu H. N. Galan M. C. Wong C.-H. Angew. Chem., Int. Ed. 2005;44:4596. doi: 10.1002/anie.200500090. - DOI - PubMed
    2. Pachamuthu K. Schmidt R. R. Chem. Rev. 2006;106:160. doi: 10.1021/cr040660c. - DOI - PubMed
    3. Rye C. S. Withers S. G. Carbohydr. Res. 2004;339:699. doi: 10.1016/j.carres.2003.12.011. - DOI - PubMed
    4. Amso Z. Bisset S. W. yang S.-H. Harris P. W. R. Wright T. H. Navo C. D. Patchett M. L. Norris G. E. Brimble M. A. Chem. Sci. 2018;9:1686. doi: 10.1039/C7SC04383J. - DOI - PMC - PubMed
    1. Schwarz S. Shen J. Kadlec K. Wang Y. Michael G. B. Feßler A. T. Vester B. Cold Spring Harb. Perspect. Med. 2016;6:a027037. doi: 10.1101/cshperspect.a027037. - DOI - PMC - PubMed
    2. Oman T. J. Boettcher J. M. Wang H. Okalibe X. N. van der Donk W. A. Nat. Chem. Biol. 2011;7:78. doi: 10.1038/nchembio.509. - DOI - PMC - PubMed
    3. Hsieh Y. S. Y. Wilkinson B. L. O'Connell M. R. Mackay J. P. Matthews J. M. Payne R. J. Org. Lett. 2012;14:1910. doi: 10.1021/ol300557g. - DOI - PubMed
    4. Biswas S. Garcia De Gonzalo C. V. Repka L. M. van der Donk W. A. ACS Chem. Biol. 2017;12:2965. doi: 10.1021/acschembio.7b00819. - DOI - PMC - PubMed
    1. Witczak Z. J. Curr. Med. Chem. 1999;6:165. - PubMed
    2. Witczak Z. J. Kaplon P. Markus Dey P. Carbohydr. Res. 2003;338:11. doi: 10.1016/S0008-6215(02)00394-4. - DOI - PubMed
    3. El-Sayed W. A. Fathi N. M. Gad W. A. El-Ashry E. S. H. J. Carbohyd. Chem. 2008;27:357. doi: 10.1080/07328300802262778. - DOI
    1. Comber R. N. Friedrich J. D. Dunshee D. A. Petty S. L. Secrist J. A. Carbohydr. Res. 1994;262:245. doi: 10.1016/0008-6215(94)84182-9. - DOI - PubMed
    2. Mangte D. V. Deshmukh S. P. Heteroat. Chem. 2007;18:390. doi: 10.1002/hc.20310. - DOI
    3. El-Sayed W. A. Fathi N. M. Gad W. A. El-Ashry E. S. H. J. Carbohyd. Chem. 2008;27:357. doi: 10.1080/07328300802262778. - DOI