Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Sep;63(3):658-68.
doi: 10.1161/01.res.63.3.658.

In vivo determination of the force of leukocyte-endothelium adhesion in the mesenteric microvasculature of the cat

Affiliations
Free article

In vivo determination of the force of leukocyte-endothelium adhesion in the mesenteric microvasculature of the cat

S D House et al. Circ Res. 1988 Sep.
Free article

Abstract

Quantitative estimates of the force of adhesion between leukocytes and endothelium were obtained from in vivo hemodynamic measurements in small venules of cat mesentery during topical application of the chemotactic compound N-formyl-methionyl-leucyl-phenylalanine (FMLP). Simultaneous measurements of upstream to downstream pressure drop, red cell velocity, microvessel hematocrit, and vessel diameter and length permitted application of the principles of momentum conservation to calculate the forces acting upon a leukocyte during adhesion to the endothelium. For venules ranging in diameter from 23 to 49 micron, the ratio of force (acting in the vessel axial direction) to wall shear stress on the endothelium fell from 14.6 X 10(-6) in small venules to 2.3 X 10(-6) dynes per dyne/cm2 in large venules; reflecting the larger pressure drops and forces attendant to greater lumen obstruction in the smaller venules. The equilibrium force representative of a balance between fluid shear stresses on the leukocyte and those at its site of contact with the endothelium ranged from 1.1 to 76.1 X 10(-5) dynes for wall shear stress ranging from 2 to 25 dynes/cm2; with venules with greater wall shear stresses having the greater leukocyte-endothelium shear force. Within individual venules, however, the force acting on a single leukocyte varied inversely with wall shear stress, most likely due to white blood cell deformation, which leads to a lessening of shear stress on the surface of the white blood cell.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources