Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep 15;27(52):13149-13160.
doi: 10.1002/chem.202101686. Epub 2021 Jul 7.

Non-conventional Behavior of a 2,1-Benzazaphosphole: Heterodiene or Hidden Phosphinidene?

Affiliations

Non-conventional Behavior of a 2,1-Benzazaphosphole: Heterodiene or Hidden Phosphinidene?

Vít Kremláček et al. Chemistry. .

Abstract

The titled 2,1-benzazaphosphole (1) (i. e. ArP, where Ar=2-(DippN=CH)C6 H4 , Dipp=2,6-iPr2 C6 H3 ) showed a spectacular reactivity behaving both as a reactive heterodiene in hetero-Diels-Alder (DA) reactions or as a hidden phosphinidene in the coordination toward selected transition metals (TMs). Thus, 1 reacts with electron-deficient alkynes RC≡CR (R=CO2 Me, C5 F4 N) giving 1-phospha-1,4-dihydro-iminonaphthalenes 2 and 3, that undergo hydrogen migration producing 1-phosphanaphthalenes 4 and 5. Compound 1 is also able to activate the C=C double bond in selected N-alkyl/aryl-maleimides RN(C(O)CH)2 (R=Me, tBu, Ph) resulting in the addition products 7-9 with bridged bicyclic [2.2.1] structures. The binding of the maleimides to 1 is semi-reversible upon heating. By contrast, when 1 was treated with selected TM complexes, it serves as a 4e donor bridging two TMs thus producing complexes [μ-ArP(AuCl)2 ] (10), [(μ-ArP)4 Ag4 ][X]4 (X=BF4 (11), OTf (12)) and [μ-ArP(Co2 (CO)6 )] (13). The structure and electron distribution of the starting material 1 as well as of other compounds were also studied from the theoretical point of view.

Keywords: Diels-Alder reactions; NRT study; heterodienes; phospha-heterocycles; phosphinidenes.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Scheme 1
Scheme 1
Relevant pnictinidene‐like systems for this study.
Scheme 2
Scheme 2
Leading resonance structures of compound 1’.
Figure 1
Figure 1
Selected Kohn‐Sham orbitals of the model species 1′ at the ωB97XD/def2‐TZVP level with a contour value of 0.05.
Scheme 3
Scheme 3
Synthesis of compounds 26.
Figure 2
Figure 2
ORTEP presentation of the molecular structures of 2 (left) and 3 (right) (40 % probability displacement ellipsoids). Hydrogen atoms and the alkyne co‐crystallized molecule in the case of 3 are omitted. Bond lengths [Å] and angles [°] for 2: P(1)−N(1) 1.704(2), P(1)−C(3) 1.904(2), P(1)−C(5) 1.854(2), N(1)−C(1) 1.478(2), C(1)−C(2) 1.545(2), C(2)−C(3) 1.331(2), C(1)−C(4) 1.529(2), C(4)−C(5) 1.401(3), N(1)−P(1)−C(5) 87.89(8), N(1)−P(1)−C(3) 88.65(7), C(3)−P(1)−C(5) 89.43(7). 3: P(1)−N(1) 1.710(2), P(1)−C(3) 1.865(2), P(1)−C(20) 1.897(2), N(1)−C(1) 1.470(3), C(1)−C(2) 1.540(3), C(2)−C(3) 1.400(3), C(1)−C(21) 1.557(3), C(20)−C(21) 1.336(3), N(1)−P(1)−C(3) 88.44(10), N(1)−P(1)−C(20) 86.48(9), C(3)−P(1)−C(4) 90.12(9).
Figure 3
Figure 3
ORTEP presentation of the molecular structure of 5 (40 % probability displacement ellipsoids). Hydrogen atoms except the NH group are omitted. Bond lengths [Å] and angles [°]: P(1)−C(1) 1.713(5), P(1)−C(5) 1.755(4), C(1)−C(2) 1.415(6), C(2)−C(3) 1.393(5), C(3)−C(4) 1.451(6), C(4)−C(5) 1.414(6), C(3)−N(1) 1.393(5), C(1)−P(1)−C(5) 100.4(2).
Figure 4
Figure 4
ORTEP presentation of the molecular structure of 6 (40 % probability displacement ellipsoids). Hydrogen atoms except the relevant CH, and NH group and benzene solvent molecule are omitted. Symmetry operator a=1−x, 1−y, 1−z. Bond lengths [Å] and angles [°]: P(1)−P(1a) 2.209(7), P(1)−O(1) 1.426(3), P(1)−C(1) 1.837(2), P(1)−C(5) 1.807(2), C(1)−C(2) 1.511(2), C(2)−C(3) 1.381(3), C(3)−C(4) 1.489(3), C(4)−C(5) 1.413(2), C(3)−N(1) 1.357(2), C(1)−P(1)−C(5) 99.64(8), C(1)−P(1)−O(1) 120.41(11), O(1)−P(1)−P(1a) 118.44(10), C(5)−P(1)−P(1a) 103.33(6).
Scheme 4
Scheme 4
Synthesis of 79 also showing the reversible binding of maleimides.
Figure 5
Figure 5
ORTEP presentation of the molecular structures of 7 (left) and 9 (right) (40 % probability displacement ellipsoids). Hydrogen atoms except the relevant CH, and NH group are omitted. Bond lengths [Å] and angles [°]: Hydrogen atoms are omitted. Bond lengths [Å] and angles [°] for 7: P(1)−N(2) 1.726(3), P(1)−C(3) 1.904(4), P(1)−C(10) 1.815(3), N(2)−C(4) 1.451(4), C(3)−C(11) 1.533(5), C(11)−C(4) 1.562(5), C(4)−C(5) 1.518(4), C(5)−C(10) 1.386(4), N(2)−P(1)−C(3) 86.85(14), N(2)−P(1)−C(10) 90.08(13), C(3)−P(1)−C(10) 91.94(15). 9: P(1)−N(1) 1.703(2), P(1)−C(1) 1.842(2), P(1)−C(20) 1.912(2), N(1)−C(7) 1.470(2), C(20)−C(23) 1.535(2), C(23)−C(7) 1.581(1), C(7)−C(2) 1.515(2), C(2)−C(1) 1.400(2), N(1)−P(1)−C(1) 89.89(6), N(1)−P(1)−C(20) 88.37(6), C(1)−P(1)−C(20) 91.17(6). Inset shows a different type of maleimide bonding in antimony analogues.
Scheme 5
Scheme 5
Synthesis of complexes 1013.
Figure 6
Figure 6
ORTEP presentation of the molecular structures of 10 showing (40 % probability displacement ellipsoids). Hydrogen atoms and dichloromethane solvent molecules are omitted. Bond lengths [Å] and angles [°]: P(1)−N(1) 1.798(9), P(2)−N(2) 1.791(8), P(1)−Au(1) 2.228(2), P(1)−Au(2) 2.216(3), P(2)−Au(3) 2.235(3), P(2)−Au(4) 2.222(2), Au(1)−Au(2) 3.2613(6), Au(1)−P(1)−Au(2) 114.26(10), Au(3)−P(2)−Au(4) 118.73(10).
Figure 7
Figure 7
ORTEP presentation of the molecular structures of 12 (40 % probability displacement ellipsoids). Hydrogen atoms, OTf anions and dichloromethane solvate molecules are omitted. Symmetry operator a=1−x, y, 3/2−z. Bond lengths [Å] and angles [°]: Ag(1)−P(1) 2.451(3), Ag(2)−P(1) 2.439(2), Ag(2)−P(2) 2.445(2), Ag(3)−P(2) 2.432(3), P(1)−N(1) 1.752(7), P(2)−N(2) 1.752(7), P(1)−C(7) 1.775(11), P(2)−C(26) 1.772(8), Ag(1)−P(1)−Ag(2) 99.59(10), Ag(2)−P(2)−Ag(3) 97.93(8), P(1)−Ag(1)−P(1) 169.88(9), P(1)−Ag(2)−P(2) 166.85(11), P(2)−Ag(3)−P(2a) 172.89(7).
Figure 8
Figure 8
ORTEP presentation of the molecular structures of 13 (40 % probability displacement ellipsoids). Hydrogen atoms are omitted. Bond lengths [Å] and angles [°]: P(1)−N(1) 1.795(2), P(1)−C(1) 1.788(2), P(1)−Co(1) 2.118(6), P(1)−Co(2) 2.139(6), Co(1)−Co(2) 2.629(4), Co(1)−P(1)−Co(2) 76.29(2), C(1)−P(1)−N(1) 88.10(9).
Scheme 6
Scheme 6
Computed model reactions at the ωB97XD/def2‐TZVP level.

Similar articles

References

    1. For recent review see:
    1. Dostál L., Coord. Chem. Rev. 2017, 353, 142–158.
    1. Nguyen M. T., van Keer A., Vanquickenborne L. G., J. Org. Chem. 1996, 61, 7077–7084. - PubMed
    1. For relevant examples see:
    1. Shah S., Simpson M. C., Smith R. C., Protasiewicz J. D., J. Am. Chem. Soc. 2001, 123, 6925–6926; - PubMed