Stress modulation as a means to improve yeasts for lignocellulose bioconversion
- PMID: 34097119
- DOI: 10.1007/s00253-021-11383-y
Stress modulation as a means to improve yeasts for lignocellulose bioconversion
Abstract
The second-generation (2G) fermentation environment for lignocellulose conversion presents unique challenges to the fermentative organism that do not necessarily exist in other industrial fermentations. While extreme osmotic, heat, and nutrient starvation stresses are observed in sugar- and starch-based fermentation environments, additional pre-treatment-derived inhibitor stress, potentially exacerbated by stresses such as pH and product tolerance, exist in the 2G environment. Furthermore, in a consolidated bioprocessing (CBP) context, the organism is also challenged to secrete enzymes that may themselves lead to unfolded protein response and other stresses. This review will discuss responses of the yeast Saccharomyces cerevisiae to 2G-specific stresses and stress modulation strategies that can be followed to improve yeasts for this application. We also explore published -omics data and discuss relevant rational engineering, reverse engineering, and adaptation strategies, with the view of identifying genes or alleles that will make positive contributions to the overall robustness of 2G industrial strains. KEYPOINTS: • Stress tolerance is a key driver to successful application of yeast strains in biorefineries. • A wealth of data regarding stress responses has been gained through omics studies. • Integration of this knowledge could inform engineering of fit for purpose strains.
Keywords: Consolidated bioprocessing; Saccharomyces cerevisiae; Second-generation biofuel; Stress modulation.
Similar articles
-
Consolidated bioprocessing of raw starch to ethanol by Saccharomyces cerevisiae: Achievements and challenges.Biotechnol Adv. 2020 Sep-Oct;42:107579. doi: 10.1016/j.biotechadv.2020.107579. Epub 2020 Jun 25. Biotechnol Adv. 2020. PMID: 32593775 Review.
-
Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions.Appl Microbiol Biotechnol. 2019 Jan;103(1):159-175. doi: 10.1007/s00253-018-9478-3. Epub 2018 Nov 5. Appl Microbiol Biotechnol. 2019. PMID: 30397768 Review.
-
[Progress and strategies on bioethanol production from lignocellulose by consolidated bioprocessing (CBP) using Saccharomyces cerevisiae].Sheng Wu Gong Cheng Xue Bao. 2010 Jul;26(7):870-9. Sheng Wu Gong Cheng Xue Bao. 2010. PMID: 20954386 Review. Chinese.
-
Engineering yeasts for raw starch conversion.Appl Microbiol Biotechnol. 2012 Sep;95(6):1377-88. doi: 10.1007/s00253-012-4248-0. Epub 2012 Jul 14. Appl Microbiol Biotechnol. 2012. PMID: 22797599 Review.
-
Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.Crit Rev Biotechnol. 2015;35(3):369-91. doi: 10.3109/07388551.2014.888048. Crit Rev Biotechnol. 2015. PMID: 24666118 Review.
Cited by
-
Comparison of the Unfolded Protein Response in Cellobiose Utilization of Recombinant Angel- and W303-1A-Derived Yeast Expressing β-Glucosidase.Front Bioeng Biotechnol. 2022 Mar 31;10:837720. doi: 10.3389/fbioe.2022.837720. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35433667 Free PMC article.
-
Exploring Yeast Diversity to Produce Lipid-Based Biofuels from Agro-Forestry and Industrial Organic Residues.J Fungi (Basel). 2022 Jun 29;8(7):687. doi: 10.3390/jof8070687. J Fungi (Basel). 2022. PMID: 35887443 Free PMC article. Review.
-
Advancing cellulose utilization and engineering consolidated bioprocessing yeasts: current state and perspectives.Appl Microbiol Biotechnol. 2025 Feb 13;109(1):43. doi: 10.1007/s00253-025-13426-0. Appl Microbiol Biotechnol. 2025. PMID: 39939397 Free PMC article. Review.
-
Species-specific effects of the introduction of Aspergillus nidulans gfdB in osmophilic aspergilli.Appl Microbiol Biotechnol. 2023 Apr;107(7-8):2423-2436. doi: 10.1007/s00253-023-12384-9. Epub 2023 Feb 22. Appl Microbiol Biotechnol. 2023. PMID: 36811707 Free PMC article.
-
Engineering natural isolates of Saccharomyces cerevisiae for consolidated bioprocessing of cellulosic feedstocks.Appl Microbiol Biotechnol. 2023 Nov;107(22):7013-7028. doi: 10.1007/s00253-023-12729-4. Epub 2023 Sep 9. Appl Microbiol Biotechnol. 2023. PMID: 37688599 Free PMC article.
References
-
- Adeboye PT, Bettiga M, Aldaeus F, Larsson PT, Olsson L (2015) Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products. Microb Cell Factories 14:149. https://doi.org/10.1186/s12934-015-0338-x - DOI
-
- Adeboye PT, Bettiga M, Olsson L (2014) The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates. AMB Express 4:46. https://doi.org/10.1186/s13568-014-0046-7 - DOI - PubMed - PMC
-
- Adeboye PT, Bettiga M, Olsson L (2017) ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae. Sci Rep 7:42635. https://doi.org/10.1038/srep42635 - DOI - PubMed - PMC
-
- Aguilera F, Peinado RA, Millán C, Ortega JM, Mauricio JC (2006) Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110:34–42. https://doi.org/10.1016/j.ijfoodmicro.2006.02.002 - DOI - PubMed
-
- Alkasrawi M, Rudolf A, Lidén G, Zacchi G (2006) Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce. Enzym Microb Technol 38:279–286. https://doi.org/10.1016/j.enzmictec.2005.08.024 - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases