Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2021 May 5;5(5):CD013540.
doi: 10.1002/14651858.CD013540.pub2.

Anticholinergic burden (prognostic factor) for prediction of dementia or cognitive decline in older adults with no known cognitive syndrome

Affiliations
Meta-Analysis

Anticholinergic burden (prognostic factor) for prediction of dementia or cognitive decline in older adults with no known cognitive syndrome

Martin Taylor-Rowan et al. Cochrane Database Syst Rev. .

Abstract

Background: Medications with anticholinergic properties are commonly prescribed to older adults. The cumulative anticholinergic effect of all the medications a person takes is referred to as the 'anticholinergic burden' because of its potential to cause adverse effects. It is possible that high anticholinergic burden may be a risk factor for development of cognitive decline or dementia. There are various scales available to measure anticholinergic burden but agreement between them is often poor.

Objectives: To assess whether anticholinergic burden, as defined at the level of each individual scale, is a prognostic factor for future cognitive decline or dementia in cognitively unimpaired older adults.

Search methods: We searched the following databases from inception to 24 March 2021: MEDLINE (OvidSP), Embase (OvidSP), PsycINFO (OvidSP), CINAHL (EBSCOhost), and ISI Web of Science Core Collection (ISI Web of Science).

Selection criteria: We included prospective and retrospective longitudinal cohort and case-control observational studies with a minimum of one year' follow-up that examined the association between an anticholinergic burden measurement scale and future cognitive decline or dementia in cognitively unimpaired older adults.

Data collection and analysis: Two review authors independently assessed studies for inclusion, and undertook data extraction, assessment of risk of bias, and GRADE assessment. We extracted odds ratios (OR) and hazard ratios, with 95% confidence intervals (CI), and linear data on the association between anticholinergic burden and cognitive decline or dementia. We intended to pool each metric separately; however, only OR-based data were suitable for pooling via a random-effects meta-analysis. We initially established adjusted and unadjusted pooled rates for each available anticholinergic scale; then, as an exploratory analysis, established pooled rates on the prespecified association across scales. We examined variability based on severity of anticholinergic burden.

Main results: We identified 25 studies that met our inclusion criteria (968,428 older adults). Twenty studies were conducted in the community care setting, two in primary care clinics, and three in secondary care settings. Eight studies (320,906 participants) provided suitable data for meta-analysis. The Anticholinergic Cognitive Burden scale (ACB scale) was the only scale with sufficient data for 'scale-based' meta-analysis. Unadjusted ORs suggested an increased risk for cognitive decline or dementia in older adults with an anticholinergic burden (OR 1.47, 95% CI 1.09 to 1.96) and adjusted ORs similarly suggested an increased risk for anticholinergic burden, defined according to the ACB scale (OR 2.63, 95% CI 1.09 to 6.29). Exploratory analysis combining adjusted ORs across available scales supported these results (OR 2.16, 95% CI 1.38 to 3.38), and there was evidence of variability in risk based on severity of anticholinergic burden (ACB scale 1: OR 2.18, 95% CI 1.11 to 4.29; ACB scale 2: OR 2.71, 95% CI 2.01 to 3.56; ACB scale 3: OR 3.27, 95% CI 1.41 to 7.61); however, overall GRADE evaluation of certainty of the evidence was low.

Authors' conclusions: There is low-certainty evidence that older adults without cognitive impairment who take medications with anticholinergic effects may be at increased risk of cognitive decline or dementia.

Antecedentes: A los adultos mayores se les prescriben con frecuencia fármacos con propiedades anticolinérgicas. El efecto anticolinérgico acumulado de todos los fármacos que toma una persona se denomina "carga anticolinérgica" por su potencial para causar efectos adversos. Es posible que una alta carga anticolinérgica sea un factor de riesgo para la aparición de un deterioro cognitivo o la demencia. Existen varias escalas para medir la carga anticolinérgica, pero la concordancia entre ellas suele ser mala.

Objetivos: Evaluar si la carga anticolinérgica, definida a nivel de cada escala individual, es un factor pronóstico de un futuro deterioro cognitivo o demencia en adultos mayores sin deterioro cognitivo. MÉTODOS DE BÚSQUEDA: Se realizaron búsquedas en las siguientes bases de datos desde su creación hasta el 24 de marzo de 2021: MEDLINE (OvidSP), Embase (OvidSP), PsycINFO (OvidSP), CINAHL (EBSCOhost) e ISI Web of Science Core Collection (ISI Web of Science). CRITERIOS DE SELECCIÓN: Se incluyeron los estudios observacionales de cohortes y de casos y controles longitudinales prospectivos y retrospectivos con un seguimiento mínimo de un año, que examinaron la asociación entre una escala de medición de la carga anticolinérgica y el futuro deterioro cognitivo o demencia en adultos mayores sin deterioro cognitivo. OBTENCIÓN Y ANÁLISIS DE LOS DATOS: Dos autores de la revisión, de forma independiente, evaluaron los estudios para su inclusión y realizaron la extracción de los datos, la evaluación del riesgo de sesgo y la evaluación GRADE. Se extrajeron los odds ratios (OR) y los cociente de riesgos instantáneos, con intervalos de confianza (IC) del 95%, y los datos lineales sobre la asociación entre la carga anticolinérgica y el deterioro cognitivo o la demencia. La intención fue agrupar cada métrica por separado; sin embargo, sólo los datos basados en el OR fueron aptos para agruparlos mediante un metanálisis de efectos aleatorios. Inicialmente se establecieron las tasas agrupadas ajustadas y no ajustadas para cada escala anticolinérgica disponible; luego, como un análisis exploratorio, se establecieron las tasas agrupadas sobre la asociación predeterminada entre las escalas. Se examinó la variabilidad según la intensidad de la carga anticolinérgica.

Resultados principales: Se identificaron 25 estudios que cumplían los criterios de inclusión (968 428 adultos mayores). Veinte estudios se realizaron en ámbitos de atención comunitaria, dos en centros de atención primaria y tres en ámbitos de atención secundaria. Ocho estudios (320 906 participantes) proporcionaron datos adecuados para el metanálisis. La escala Anticholinergic Cognitive Burden (escala ACB) fue la única escala con datos suficientes para un metanálisis "basado en la escala". Los OR no ajustados indicaron un aumento en el riesgo de deterioro cognitivo o demencia en los adultos mayores con sobrecarga anticolinérgica (OR 1,47; IC del 95%: 1,09 a 1,96) y los OR ajustados indicaron igualmente un aumento en el riesgo de sobrecarga anticolinérgica, definida según la escala ACB (OR 2,63; IC del 95%: 1,09 a 6,29). El análisis exploratorio que combina los OR ajustados entre las escalas disponibles apoyó estos resultados (OR 2,16; IC del 95%: 1,38 a 3,38) y hubo evidencia de variabilidad en el riesgo según la intensidad de la carga anticolinérgica (1 en escala ACB): OR 2,18; IC del 95%: 1,11 a 4,29; 2 en escala ACB: OR 2,71; IC del 95%: 2,01 a 3,56; 3 en escala ACB: OR 3,27; IC del 95%: 1,41 a 7,61); sin embargo, la evaluación global de la certeza de la evidencia con el método GRADE fue baja.

Conclusiones de los autores: Existe evidencia de certeza baja de que los adultos mayores sin deterioro cognitivo que toman fármacos con efectos anticolinérgicos podrían tener un mayor riesgo de deterioro cognitivo o demencia.

PubMed Disclaimer

Conflict of interest statement

MT: none

SE: none

ANS: none

JM: none

PM: none

RS: none

CS: none

YK: none

TQ: none

Figures

1
1
Study flow diagram.
2
2
Risk of bias summary: review authors' judgements about each risk of bias item for each included study.
3
3
Unadjusted analysis: anticholinergic burden and odds of future cognitive decline or dementia.
4
4
Primary analysis: adjusted association between ACB scale and odds of future cognitive decline or dementia.
5
5
Primary analysis: relationship between severity of anticholinergic burden (defined according to ACB scale) and odds of future cognitive decline or dementia.
6
6
Exploratory 'cross scale' analysis: adjusted association between anticholinergic burden and odds of future cognitive decline or dementia.
7
7
Post hoc analysis: adjusted association between anticholinergic burden and odds of future dementia specifically.
8
8
Risk of bias analysis: adjusted association between anticholinergic burden and odds of future cognitive decline or dementia restricted to low risk of bias studies only.
9
9
Subgroup analysis: adjusted association between anticholinergic burden and odds of future cognitive decline or dementia subgrouped by setting.
10
10
Subgroup analysis: adjusted association between anticholinergic burden and odds of future cognitive decline or dementia subgrouped by duration of follow‐up.

Comment in

Similar articles

Cited by

References

References to studies included in this review

Ancelin 2006 {published data only}
    1. Ancelin ML, Artero S, Portet F, Dupuy A-M, Touchon J, Ritchie K. Non-degenerative mild cognitive impairment in elderly people and use of anticholinergic drugs: longitudinal cohort study. BMJ 2006;332(7539):455-9. - PMC - PubMed
Brombo 2018 {published data only}
    1. Brombo G, Bianchi L, Maietti E, Malacarne F, Coronello A, Cherubini A, et al. Association of anticholinergic drug burden with cognitive and functional decline over time in older inpatients: results from the CRIME Project. Drugs & Aging 2018;35:917-24. - PubMed
Campbell 2016 {published data only}
    1. Campbell NL, Perkins AJ, Bradt P, Perk S, Wielage RC, Boustani MA. Association of anticholinergic burden with cognitive impairment and health care utilization among a diverse ambulatory older adult population. Pharmacotherapy 2016;36(11):1123-31. - PMC - PubMed
Chuang 2017 {published data only}
    1. Chuang YF, Elango P, Gonzalez CE, Thambisetty M. Midlife anticholinergic drug use, risk of Alzheimer's disease, and brain atrophy in community-dwelling older adults. Alzheimer's & Dementia 2017;3(3):471-9. - PMC - PubMed
Coupland 2019 {published data only}
    1. Coupland CA, Hill T, Dening T, Morriss R, Moore M, Hippisley-Cox J. Anticholinergic drug exposure and the risk of dementia: a nested case-control study. JAMA Internal Medicine 2019;179(8):1084-93. - PMC - PubMed
Fox 2011a {published data only}
    1. Fox C, Richardson K, Maidment ID, Savva GM, Mathews FE, Smithard D, et al. Anticholinergic medication use and cognitive impairment in the older population: the Medical Research Council Cognitive Function and Ageing Study. Journal of the American Geriatrics Society 2011;59:1477-83. - PubMed
Gray 2015 {published data only}
    1. Gray SL, Anderson ML, Dublin S, Hanlon JT, Hubbard R, Walker R, et al. Cumulative use of strong anticholinergic medications and incident dementia. JAMA Internal Medicine 2015;175(3):401-7. - PMC - PubMed
Grossi 2019 {published data only}
    1. Grossi CM, Richardson K, Fox C, Maidment I, Steel N, Loke YK, et al. Anticholinergic and benzodiazepine medication use and risk of incident dementia: a UK cohort study. BMC Geriatrics 2019;19:276. - PMC - PubMed
Hafdi 2020 {published data only}
    1. Hafdi M, Hoevenaar-Blom MP, Beishuizen CR, Moll van Charante EP, Richard E, Gool WA. Association of benzodiazepine and anticholinergic drug usage with incident dementia: a prospective cohort study of community-dwelling older adults. Journal of the American Medical Directors Association 2020;21:188-93. - PubMed
Han 2008 {published data only}
    1. Han L, Agostini JV, Allore HG. Cumulative anticholinergic exposure is associated with poor memory and executive function in older men. Journal of the American Geriatric Society 2008;56(12):2203-10. - PMC - PubMed
Hsu 2017 {published data only}
    1. Hsu WH, Wen YW, Chen LK, Hsiao FY. Comparative associations between measures of anticholinergic burden and adverse clinical outcomes. Annals of Family Medicine 2017;15:561-9. - PMC - PubMed
Iyer 2020 {published data only}
    1. Iyer S, Lozo S, Botros C, Wang C, Warren A, Sand P, et al. Cognitive changes in women starting anticholinergic medications for overactive bladder: a prospective study. International Urogynecology Journal 2020;12:2653-60. - PubMed
Jessen 2010 {published data only}
    1. Jessen F, Kaduszkiewicz H, Daerr M, Bickel H, Pentzek M, Riedel-Heller S, et al. Anticholinergic drug use and risk for dementia: target for dementia prevention. European Archives of Psychiatry and Clinical Neuroscience 2010;260:S111-5. - PubMed
Joung 2019 {published data only}
    1. Joung K, Kim S, Cho Y, Cho S. Association of anticholinergic use with incidence of Alzheimer's disease: population-based cohort study. Scientific Reports 2019;9:6802. - PMC - PubMed
Kashyap 2014 {published data only}
    1. Kashyap M, Belleville S, Mulsant BH, Hilmer SN, Paquette A, Tu LM, et al. Methodological challenges in determining longitudinal associations between anticholinergic drug use and incident cognitive decline. Journal of the American Geriatrics Society 2014;62:336-41. - PMC - PubMed
Koyama 2014 {published data only}
    1. Koyama A, Steinman M, Ensrud K, Hillier TA, Yaffe K. Long-term cognitive and functional effects of potentially inappropriate medications in older women. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 2014;69(4):423-9. - PMC - PubMed
Low 2009 {published data only}
    1. Low LF, Anstey KJ, Sachdev P. Use of medications with anticholinergic properties and cognitive function in a young-old community sample. International Journal of Geriatric Psychiatry 2009;24:578-84. - PubMed
Moriarty 2020 {published data only}
    1. Moriarty F, Savva GM, Grossi CM, Bennett K, Fox C, Maidment I, et al. Cognitive decline associated with anticholinergics, benzodiazepines and Z-drugs: findings from the Irish Longitudinal Study on Ageing (TILDA). British Journal of Clinical Pharmacology 2020 Dec 3 [Epub ahead of print]. [DOI: 10.1111/bcp.14687] - DOI - PubMed
Papenberg 2017 {published data only}
    1. Papenberg G, Backman L, Fratiglioni L, Laukka EJ, Fastbom J, Johnell K. Anticholinergic drug use is associated with episodic memory decline in older adults without dementia. Neurobiology of Aging 2017;55:27-32. - PubMed
Richardson 2018 {published data only}
    1. Richardson K, Fox C, Maidment I, Steel N, Loke YK, Arthur A, et al. Anticholinergic drugs and risk of dementia: case-control study. BMJ 2018;360:k1315. - PMC - PubMed
Risacher 2016 {published data only}
    1. Risacher SL, McDonald BC, Tallman EF, West JD, Farlow MR, Unverzagt FW, et al. Association between anticholinergic medication use and cognition, brain metabolism, and brain atrophy in cognitively normal older adults. JAMA Neurology 2016;73(6):721-32. - PMC - PubMed
Shah 2013 {published data only}
    1. Shah RC, Janos AL, Kline JE, Yu L, Leurgans SE, Wilson RS, et al. Cognitive decline in older persons initiating anticholinergic medications. PloS One 2013;8(5):e64111. - PMC - PubMed
Sheu 2019 {published data only}
    1. Sheu JJ, Tsai MT, Ericksen SR, Wu CH. Association between anticholinergic medication use and risk of dementia among patients with Parkinson's disease. Pharmacotherapy 2019;39(8):798-808. - PubMed
Whalley 2012 {published data only}
    1. Whalley LJ, Sharma S, Fox HC, Murray AD, Staff RT, Duthie AC, et al. Anticholinergic drugs in late life: adverse effects on cognition but not on progress to dementia. Journal of Alzheimer's Disease 2012;30:253-61. - PubMed
Yarnall 2015 {published data only}
    1. Yarnall AJ, Lawson RA, Duncan GW, Breen DP, Khoo TK, Brooks D, et al. Anticholinergic load: is there a cognitive cost in early Parkinson's disease? Journal of Parkinson's Disease 2015;5:743-7. - PubMed

References to studies excluded from this review

Aalto 2018 {published data only}
    1. Aalto UL, Roitto HM, Finne-Soveri H, Kautiainen H, Pitkala K. Use of anticholinergic drugs and its relationship with psychological well-being and mortality in long-term care facilities in Helsinki. Journal of the American Medical Directors Association 2018;19(6):511-5. - PubMed
Andrade 2019 {published data only}
    1. Andrade C. Anticholinergic drug exposure and the risk of dementia: there is modest evidence for an association but not for causality. Journal of Clinical Psychiatry 2019;80(4):19f13000. - PubMed
Andre 2019 {published data only}
    1. Andre L, Gallini A, Montastruc F, Coley N, Montastruc JL, Vellas B, et al. Anticholinergic exposure and cognitive decline in older adults: effect of anticholinergic exposure definitions in a 3-year analysis of the Multidomain Alzheimer Preventive Trial (MAPT) study. British Journal of Clinical Pharmacology 2019;85(1):71-99. - PMC - PubMed
Ang 2015 {published data only}
    1. Ang MS, Abdul Rashid NA, Lee J. Impact of anticholinergic burden on cognitive performance in patients with schizophrenia. Academy of Medicine Singapore 2015;44:S55.
Ang 2017 {published data only}
    1. Ang MS, Abdul Rashid NA, Lam M, Rapisarda A, Kraus M, Keefe RS, et al. The impact of medication anticholinergic burden on cognitive performance in people with schizophrenia. Journal of Clinical Psychopharmacology 2017;37(6):651-6. - PMC - PubMed
Aparasu 2014 {published data only}
    1. Aparasu RR, Chatterjee S, Carnahan RM, Chen H, Johnson ML. Anticholinergic medication use and risk of dementia among elderly nursing home residents with depression. Value in Health 2014;17(3):A208. - PubMed
Asano 2019 {published data only}
    1. Asano R, Tanaka A, Arai Y, Hirata T, Abe Y, Oguma Y. Drug burden of polypharmacy and anticholinergic/sedative drugs and physical/cognitive/mental related outcomes of the community-dwelling elderly people: the Kawasaki well-being project. Pharmacoepidemiology and Drug Safety 2019;28:293. - PubMed
Ben Omar 2013 {published data only}
    1. Ben Omar N, Wenzel-Seifert K, Haen E. Age-dependency of psychotropic drug-induced anticholinergic adverse events: analysis of the data bank of the pharmacovigilance system AGATE. Naunyn-Schmiedeberg's Archives of Pharmacology 2013;386:S90.
Bostock 2013 {published data only}
    1. Bostock CV, Soiza RL, Mangoni AA. Associations between different measures of anticholinergic drug exposure and Barthel Index in older hospitalized patients. Therapeutic Advances in Drug Safety 2013;4(6):235-45. - PMC - PubMed
Bottiggi 2006 {published data only}
    1. Bottiggi KA, Salazar JC, Yu L, Caban-Holt AM, Ryan M, Mendiondo MS, et al. Long-term cognitive impact of anticholinergic medications in older adults. American Journal of Geriatric Psychiatry 2006;14(11):980-4. - PubMed
Bouchard 2017 {published data only}
    1. Bouchard AB. Longitudinal relations among anticholinergic drug burden, neurocognition, and community functioning in outpatients with serious mental illness. Dissertation abstracts international 2017;78:No pagnation.
Broder 2020 {published data only}
    1. Broder J, Lockery J, Wolfe R, Ryan J, Woods R, Ernst M. Anticholinergic medication burden and longitudinal cognitive function in older persons. Journal of the American College of Clinical Pharmacy 2020;3(8):1625.
Cai 2013 {published data only}
    1. Cai X, Campbell N, Khan B, Callahan C, Boustani M. Chronic anticholinergic use and the aging brain. Alzheimers & Dementia 2013;9(4):377-85. - PMC - PubMed
Campbell 2010 {published data only}
    1. Campbell NL, Boustani MA, Lane KA, Gao S, Hendrie H, Khan BA, et al. Use of anticholinergics and the risk of cognitive impairment in an African American population. Neurology 2010;75(2):152-9. - PMC - PubMed
Campbell 2018 {published data only}
    1. Campbell NL, Lane KA, Gao S, Boustani MA, Unverzagt F. Anticholinergics influence transition from normal cognition to mild cognitive impairment in older adults in primary care. Pharmacotherapy 2018;38(5):511-9. - PMC - PubMed
Cancelli 2008 {published data only}
    1. Cancelli I, Gigli GL, Piani A, Zanchettin B, Janes F, Rinaldi A, et al. Drugs with anticholinergic properties as a risk factor for cognitive impairment in elderly people: a population-based study. Journal of Clinical Psychopharmacology 2008;28(6):654-9. - PubMed
Cao 2008 {published data only}
    1. Cao YJ, Mager DE, Simonsick EM, Hilmer SN, Ling SM, Windham BG, et al. Physical and cognitive performance and burden of anticholinergics, sedatives, and ACE inhibitors in older women. Clinical Pharmacology and Therapeutics 2008;83(3):422-9. - PubMed
Cardwell 2020 {published data only}
    1. Cardwell K, Kerse N, Ryan C, Teh R, Moyes SA, Menzies O, et al. The association between Drug Burden Index (DBI) and health-related outcomes: a longitudinal study of the 'oldest old' (LiLACS NZ). Drugs & Aging 2020;37(3):205-13. - PubMed
Carriere 2009 {published data only}
    1. Carriere I, Fourrier-Reglat A, Dartigues JF, Rouaud O, Pasquier F, Ritchie K, et al. Drugs with anticholinergic properties, cognitive decline, and dementia in an elderly general population: the 3-City Study. Archives of Internal Medicine 2009;169(14):1317-24. - PMC - PubMed
Cherniaeva 2019 {published data only}
    1. Cherniaeva M, Kulikova M, Ostroumova O, Golovina O, Kochetkov A, Sychev D. Impact of the anticholinergic burden on cognitive functions in very old patients. European Journal of Clinical Pharmacology 2019;75:S71.
Cooley 2020 {published data only}
    1. Cooley SA, Ances B. Effect of anticholinergic medications on brain integrity in older HIV-positive adults. Topics in Antiviral Medicine 2020;28(1):137.
Cooley 2021 {published data only}
    1. Cooley SA, Paul RH, Strain JF, Boerwinkle A, Kilgore C, Ances BM. Effects of anticholinergic medication use on brain integrity in persons living with HIV and persons without HIV. AIDS 2021;35(3):381-91. - PMC - PubMed
Dmochowski 2021 {published data only}
    1. Dmochowski RR, Thai S, Iglay K, Enemchukwu E, Tee S, Varano S, et al. Increased risk of incident dementia following use of anticholinergic agents: a systematic literature review and meta-analysis. Neurourology and Urodynamics 2021;40(1):28-37. - PMC - PubMed
Drag 2012 {published data only}
    1. Drag LL, Wright SL, Bieliauskas LA. Prescribing practices of anticholinergic medications and their association with cognition in an extended care setting. Journal of Applied Gerontology 2012;31(2):239-59.
Ehrt 2010 {published data only}
    1. Ehrt U, Broich K, Larsen JP, Ballard C, Aarsland D. Use of drugs with anticholinergic effect and impact on cognition in Parkinson's disease: a cohort study. Journal of Neurology, Neurosurgery and Psychiatry 2010;81(2):160-5. - PubMed
Fox 2011b {published data only}
    1. Fox C, Livingston G, Maidment ID, Coulton S, Smithard DG, Boustani M. The impact of anticholinergic burden in Alzheimer's dementia – the LASER-AD study. Age and Ageing 2011;40(6):730-5. - PubMed
Gnjidic 2012 {published data only}
    1. Gnjidic D, Le Couteur DG, Naganathan V, Cumming RG, Creasey H, Waite LM, et al. Effects of drug burden index on cognitive function in older men. Journal of Clinical Psychopharmacology 2012;32(2):273-7. - PubMed
Hanlon 2020 {published data only}
    1. Hanlon P, Quinn TJ, Gallacher KI, Myint PK, Jani BD, Nicholl BI, et al. Assessing risks of polypharmacy involving medications with anticholinergic properties. Annals of Family Medicine 2020;18(2):148-55. - PMC - PubMed
Hong 2019 {published data only}
    1. Hong C-T, Chan L, Wu D, Chen W-T, Chien L-N. Antiparkinsonism anticholinergics increase dementia risk in patients with Parkinson's disease. Parkinsonism & Related Disorders 2019;65:224-9. - PubMed
Huang 2012 {published data only}
    1. Huang K-H, Chan Y-F, Shih H-C, Lee C-Y. Relationship between potentially inappropriate anticholinergic drugs (PIADs) and adverse outcomes among elderly patients in Taiwan. Journal of Food and Drug Analysis 2012;20(4):930-7.
Jakeman 2020 {published data only}
    1. Jakeman B, Scherrer A, Darling K, Nadin I, Hasse B, Hauser C, et al. Effect of non-HIV drugs on neurocognitive domains in a well treated HIV population. Topics in Antiviral Medicine 2020;28(1):142.
Kada 2019 {published data only}
    1. Kada S. Long-term effects of anticholinergics and sedatives on cognitive and physical function. Pharmaceutisch Weekblad 2019;154(44):32-6.
Kamkwalala 2020 {published data only}
    1. Kamkwalala AR, Ma Q, Karris MY, Sundermann E, Ellis RJ, Moore DJ, et al. Anticholinergic burden is associated with depressive symptoms in persons with HIV. Topics in Antiviral Medicine 2020;28(1):144.
Kar 2004 {published data only}
    1. Kar S, Slowikowski SP, Westaway D, Mount HT. Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer's disease. Journal of Psychiatry & Neuroscience 2004;29:427-41. - PMC - PubMed
Kashyap 2013 {published data only}
    1. Kashyap M, Belleville S, Mulsant B, Hilmer S, Tannenbaum C. The effect of misclassification of the outcome on the relationship between an increase in anticholinergic drug burden and memory impairment in older adults. Pharmacoepidemiology and Drug Safety 2013;22:505-6.
Khan 2021 {published data only}
    1. Khan WU, Ghazala Z, Brooks HJ, Subramaniam P, Mulsant BH, Kumar S, et al. The impact of anticholinergic burden on functional capacity in persons with schizophrenia across the adult life span. Schizophrenia Bulletin 2021;47(1):249-57. - PMC - PubMed
Lampela 2013 {published data only}
    1. Lampela P, Lavikainen P, Garcia-Horsman JA, Bell JS, Huupponen R, Hartikainen S. Anticholinergic drug use, serum anticholinergic activity, and adverse drug events among older people: a population-based study. Drugs & Aging 2013;30(5):321-30. - PubMed
Lattanzio 2018 {published data only}
    1. Lattanzio F, Corica F, Schepisi R, Amantea D, Bruno F, Cozza A, et al. Anticholinergic burden and 1-year mortality among older patients discharged from acute care hospital. Geriatrics & Gerontology International 2018;18(5):705-13. - PubMed
Lavrador 2020 {published data only}
    1. Lavrador M, Cabral AC, Figueiredo IV, Verissimo MT, Castel-Branco M, Fernandez-Llimos F. Using different anticholinergic lists for DBI calculation: effects on anticholinergic outcome prediction. International Journal of Clinical Pharmacy 2020;42(2):816.
Lavrador 2021 {published data only}
    1. Lavrador M, Cabral AC, Figueiredo IV, Verissimo MT, Castel-Branco MM, Fernandez-Llimos F. Size of the associations between anticholinergic burden tool scores and adverse outcomes in older patients. International Journal of Clinical Pharmacy 2021;43(1):128-36. - PubMed
Lawson 2015 {published data only}
    1. Lawson RA, Yarnall AJ, Duncan GW, Breen DP, Khoo TK, Brooks D, et al. Does prolonged use of anticholinergic medication contribute to cognitive impairment in early Parkinson's disease? Movement Disorders 2015;30:S344.
Lechevallier‐Michel 2005 {published data only}
    1. Lechevallier-Michel N, Molimard M, Dartigues JF, Fabrigoule C, Fourrier-Reglat A. Drugs with anticholinergic properties and cognitive performance in the elderly: results from the PAQUID Study. British Journal of Clinical Pharmacology 2005;59(2):143-51. - PMC - PubMed
Liu 2020 {published data only}
    1. Liu Y-P, Chien W-C, Chung C-H, Chang H-A, Kao Y-C, Tzeng N-S. Are anticholinergic medications associated with increased risk of dementia and behavioral and psychological symptoms of dementia? A nationwide 15-year follow-up cohort study in Taiwan. Frontiers in Pharmacology 2020;11:30. - PMC - PubMed
Lucas 2016 {published data only}
    1. Lucas C, Greene M, Esmaeili-Firidouni P, Valcour V. Anticholinergic burden and cognition in HIV+ older adults. Journal of the American Geriatrics Society 2016;64:S132.
Naharci 2017 {published data only}
    1. Naharci MI, Cintosun U, Ozturk A, Oztin H, Turker T, Bozoglu E, et al. Effect of anticholinergic burden on the development of dementia in older adults with subjective cognitive decline. Psychiatry and Clinical Psychopharmacology 2017;27(3):269-76.
Neelamegam 2020 {published data only}
    1. Neelamegam M, Zgibor J, Chen H, O'Rourke K, Bakour C, Rajaram L, et al. The effect of cumulative anticholinergic use on the cognitive function of older adults: results from the Personality and Total Health (PATH) through life study. Journals of Gerontology Series A. Biological Sciences & Medical Sciences 2020;75(9):1706-14. - PMC - PubMed
Nishtala Prasad 2020 {published data only}
    1. Nishtala Prasad S, Allore H, Han L, Jamieson HA, Hilmer SN, Chyou T-Y. Impact of anticholinergic burden on cognitive performance: a cohort study of community-dwelling older adults. Journal of the American Medical Directors Association 2020;21(9):1357. - PMC - PubMed
Park 2017 {published data only}
    1. Park HY, Park JW, Song HJ, Sohn HS, Kwon JW. The association between polypharmacy and dementia: a nested case control study based on a 12-year longitudinal cohort database in South Korea. PloS One 2017;12:e0169463. - PMC - PubMed
Pasina 2013 {published data only}
    1. Pasina L, Djade CD, Lucca U, Nobili A, Tettamanti M, Franchi C, et al. Association of anticholinergic burden with cognitive and functional status in a cohort of hospitalized elderly: comparison of the anticholinergic cognitive burden scale and anticholinergic risk scale: results from the REPOSI study. Drugs & Aging 2013;30(2):103-12. - PubMed
Pasina 2020 {published data only}
    1. Pasina L, Lucca U, Tettamanti M. Relation between anticholinergic burden and cognitive impairment: results from the Monzino 80-plus population-based study. Pharmacoepidemiology and Drug Safety 2020;29(12):1696-702. - PubMed
Perez 2019 {published data only}
    1. Perez AT, Moreno AV, Ramos BS, Alfaro Lara ER, Santos Rubio MD, Rustarazo SB, et al. Anticholinergic burden scales as predictors of cognitive impairment in elderly multimorbidity patients. European Geriatric Medicine 2019;10:S227.
Pfistermeister 2017 {published data only}
    1. Pfistermeister B, Tumena T, Gasmann KG, Maas R, Fromm MF. Anticholinergic burden and cognitive function in a large German cohort of hospitalized geriatric patients. PloS One 2017;12(2):e0171353. - PMC - PubMed
Richardson 2018b {published data only}
    1. Richardson K, Grossi C, Fox C, Maidment ID, Loke Y, Steel N, et al. Anticholinergic medications, benzodiazepines, and long-term cognitive decline in large observational studies: findings from the Anticholinergics, Benzodiazepines, Cognition and Dementia (ABCD) study. Alzheimer's & Dementia 2018;14:P966.
Rudolph 2008 {published data only}
    1. Rudolph JL, Salow MJ, Angelini MC, McGlinchey RE. The anticholinergic risk scale and anticholinergic adverse effects in older persons. Archives of Internal Medicine 2008;168(5):508-13. - PubMed
Salyer 2019 {published data only}
    1. Salyer J, Sargent L, Tirado C, Flattery MP, Shah KB. Anticholinergic burden and cognitive impairment in patients with heart failure. Journal of Heart and Lung Transplantation 2019;38(4 Suppl):S299.
Shetty 2020 {published data only}
    1. Shetty N, Dubaz O, Yu Y, Gao H, Simuni T. Anticholinergic use in Parkinson's disease: practice patterns in patients with cognitive impairment. Neurology 2020;94(15 Suppl):2720.
Shiota 2020 {published data only}
    1. Shiota T, Torimoto K, Okuda M, Iwata R, Kumamoto H, Miyake M, et al. Cognitive burden and polypharmacy in elderly Japanese patients treated with anticholinergics for an overactive bladder. Lower Urinary Tract Symptoms 2020;12(1):54-61. - PubMed
Suh 2020 {published data only}
    1. Suh Y, Ah YM, Han E, Jun K, Hwang S, Choi KH, et al. Dose response relationship of cumulative anticholinergic exposure with incident dementia: validation study of Korean anticholinergic burden scale. BMC Geriatrics 2020;20(1):265. - PMC - PubMed
Tanaka 2019 {published data only}
    1. Tanaka A, Arai Y, Hirata T, Abe Y, Oguma Y, Urushihara H. Effects of polypharmacy and anticholinergic/sedative drugs on the physical/cognitive/mental related outcomes of community-dwelling elderly people: the Kawasaki Wellbeing Project. Japanese Journal of Geriatrics 2019;56(4):504-15. - PubMed
Tristancho‐Perez 2019 {published data only}
    1. Tristancho-Perez A, Belda Rustarazo S, Lopez-Malo MD, Santos-Rubio MD, Galvan-Banqueri M, Sanchez Fidalgo S. Impact of anticholinergic burden, quantified by anticholinergic risk scales, on cognitive and functional status and falls in patients with multimorbidity: a preliminary study. European Journal of Hospital Pharmacy 2019;26:A274.
Tsoutsoulas 2017 {published data only}
    1. Tsoutsoulas C, Mulsant BH, Kumar S, Ghazala Z, Voineskos AN, Menon M, et al. Anticholinergic burden and cognition in older patients with schizophrenia. Journal of Clinical Psychiatry 2017;78(9):e1284-90. - PubMed
Verdoux 2020 {published data only}
    1. Verdoux H, Quiles C, Bon L, Chereau-Boudet I, Dubreucq J, Fiegi L, et al. Impact of anticholinergic load on functioning and cognitive performances of persons with psychosis referred to psychosocial rehabilitation centers. Psychological Medicine 2020:1-9. - PubMed
Wang 2019 {published data only}
    1. Wang YC, Chen YL, Huang CC, Ho CH, Huang YT, Wu MP, et al. Cumulative use of therapeutic bladder anticholinergics and the risk of dementia in patients with lower urinary tract symptoms: a nationwide 12-year cohort study. BMC Geriatrics 2019;19(1):380. - PMC - PubMed
Weigand 2020 {published data only}
    1. Weigand AJ, Bondi MW, Thomas KR, Campbell NL, Galasko DR, Salmon DP, et al. Association of anticholinergic medications and AD biomarkers with incidence of MCI among cognitively normal older adults. Neurology 2020;95(16):e2295-304. - PMC - PubMed
Welk 2020 {published data only}
    1. Welk B, McArthur E. Increased risk of dementia among patients with overactive bladder treated with an anticholinergic medication compared to a beta-3 agonist: a population-based cohort study. BJU International 2020;126(1):183-90. - PubMed
Wouters 2017 {published data only}
    1. Wouters H, Hilmer S, Gnjidic D, Campen J, Teichert M, Meer H, Schaap LA, Huisman M, Comijis HC, Denig P, Lamoth CJ, Taxis K. Long-term exposure to anticholinergic and sedative drugs and cognitive and physical function in later life. European Geriatric Medicine 2017. - PubMed
Wouters 2020 {published data only}
    1. Wouters H, Hilmer SN, Gnjidic D, Campen JP, Teichert M, Meer HG, et al. Long-term exposure to anticholinergic and sedative medications and cognitive and physical function in later life. Journals of Gerontology Series A. Biological Sciences & Medical Sciences 2020;75(2):357-65. - PubMed
Ziad 2021 {published data only}
    1. Ziad A, Berr C, Ruiz F, Begaud B, Lemogne C, Goldberg M, et al. Anticholinergic activity of psychotropic drugs and cognitive impairment among participants aged 45 and over: the CONSTANCES study. Drug Safety 2021;44(5):565-79. - PubMed

Additional references

Alzheimer's Society 2019
    1. Alzheimer's Society. Annual report overview 2018/19. www.alzheimers.org.uk/about-us/policy-and-influencing/dementia-scale-imp... (accessed prior to 27 April 2021).
APA 2000
    1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th Text Revision edition. Washington (DC): American Psychiatric Association, 2000.
Bentley 2011
    1. Bentley P, Driver J, Dolan RJ. Cholinergic modulation of cognition: insights from human pharmacological functional neuroimaging. Progress in Neurobiology 2011;94:360-88. - PMC - PubMed
Boustani 2009
    1. Boustani M, Campbell N, Munger S, Maidment I, Fox C. Impact of anticholinergics on the aging brain: a review and practical application. Aging Health 2009;4(3):311-20. - PMC - PubMed
Chew 2008
    1. Chew ML, Mulsant BH, Pollock BG, Lehman ME, Greenspan A, Mahmoud RA, et al. Anticholinergic activity of 107 medications commonly used by older adults. Journal of American Geriatric Society 2008;56:1333-41. - PubMed
Comprehensive Meta‐Analysis Version 3 [Computer program]
    1. Comprehensive Meta-Analysis Version 3. Englewood (NJ): Biostat, 2013.
Covidence [Computer program]
    1. Veritas Health Innovation Covidence. Melbourne, Australia: Veritas Health Innovation. Available at www.covidence.org.
Folstein 1975
    1. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 1975;12:189-98. - PubMed
Fox 2014
    1. Fox C, Smith T, Maidment I, Chan WY, Bua N, Myint PK, et al. Effect of medications with anti-cholinergic properties on cognitive function, delirium, physical function and mortality: a systematic review. Age and Ageing 2014;43:604-15. - PubMed
Geersing 2012
    1. Geersing GJ, Bouwmeester W, Zuithoff P, Spijker R, Leeflang M, Moons KG. Search filters for finding prognostic and diagnostic prediction studies in MEDLINE to enhance systematic reviews. PloS One 2012;7:e32844. - PMC - PubMed
Grave‐Morris 2020
    1. Grave-Morris K, Stewart C, Soiza RL, Taylor-Rowan M, Quinn TJ, Loke YN, et al. The prognostic value of anticholinergic burden measures in relation to mortality in older individuals: a systematic review and meta-analysis. Frontiers in Pharmacology 2020;11:570. - PMC - PubMed
Hayden 2012
    1. Hayden JA, Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias in studies of prognostic factors. Annals of International Medicine 2012;158(4):280-6. - PubMed
Higgins 2019
    1. Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al, editor(s). Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). Cochrane, 2019. Available from www.training.cochrane.org/handbook. - PMC - PubMed
Huguet 2013
    1. Huguet A, Hayden JA, Stinson J, McGrath PJ, Chambers CT, Tougas ME, et al. Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Systematic Reviews 2013;2:71. - PMC - PubMed
Iorio 2015
    1. Iorio A, Spencer FA, Falavigna M, Alba C, Lang E, Burnand B, et al. Use of GRADE for assessment of evidence about prognosis: rating confidence in estimates of event rates in broad categories of patients. BMJ 2015;350:h870. - PubMed
Jack 1999
    1. Jack CR Jr, Petersen RC, Xu Yc, Obrien PC, Smith GE, Ivnik RJ, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999;52:1397-403. - PMC - PubMed
Kersten 2013
    1. Kersten H, Molden E, Tolo IK, Skovlund E, Engedal K, Wyller TB. Cognitive effects of reducing anticholinergic drug burden in a frail elderly population: a randomized controlled trial. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 2013;68:271-8. - PubMed
Lisibach 2021
    1. Lisibach A, Benelli V, Ceppi MG, Waldner-Knogler K, Csajka C, Lutters M. Quality of anticholinergic burden scales and their impact on clinical outcomes: a systematic review. European Journal of Clinical Pharmacology 2021;77(2):147-62. - PMC - PubMed
Litvan 2012
    1. Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC, et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines. Movement Disorder 2012;27:349-56. - PMC - PubMed
Livingston 2017
    1. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet 2017;390:2673-734. - PubMed
Mayer 2015
    1. Mayer T, Haefeli WE, Seidling HM. Different methods, different results – how do available methods link a patient's anticholinergic load with adverse outcomes? European Journal of Clinical Pharmacology 2015;71(11):1299-314. - PubMed
McKeith 2005
    1. McKeith IG, Dickson DW, Lowe J, Emre M, O'Brien JT, Feldman H, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005;65:1863-72. - PubMed
McKhann 1984
    1. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939-44. - PubMed
McKhann 2001
    1. McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Archives of Neurology 2001;58:1803-9. - PubMed
McKhann 2011
    1. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging – Alzheimer's Association work group on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia 2011;7:263-9. - PMC - PubMed
Moher 2009
    1. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine 2009;6:e1000097. - PMC - PubMed
Myint 2015
    1. Myint PK, Fox C, Kwok CS, Luben RN, Wareham NJ, Khaw KT. Total anticholinergic burden and risk of mortality and cardiovascular disease over 10 years in 21,636 middle-aged and older men and women of EPIC-Norfolk prospective population study. Age and Ageing 2015;44:219-25. - PMC - PubMed
Nasreddine 2005
    1. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatric Society 2005;53:695-9. - PubMed
NICE 2018
    1. National Institute for Health and Care Excellence. Dementia: assessment, management and support for people living with dementia and their carers, 2018. www.nice.org.uk/guidance/ng97 (accessed prior to 27 April 2021). - PubMed
Peat 2014
    1. Peat G, Riley RD, Croft P, Morley KI, Kyzas PA, Moons KG, et al, PROGRESS Group. Improving the transparency of prognosis research: the role of reporting, data sharing, registration, and protocols. PLoS Medicine 2014;11:7. - PMC - PubMed
Petersen 2001
    1. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001;56:1133-42. - PubMed
Pieper 2020
    1. Pieper NT, Grossi CM, Chan WY, Loke YK, Savva GM, Haroulis C, et al. Anticholinergic drugs and incident dementia, mild cognitive impairment and cognitive decline: a meta-analysis. Age and Ageing 2020;00:1-9. - PMC - PubMed
Prince 2016
    1. Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M. Improving healthcare for people living with dementia: coverage, quality and costs now and in the future. www.alzint.org/resource/world-alzheimer-report-2016/ (accessed prior to 27 April 2021).
Richardson 2018a
    1. Richardson K, Fox C, Maidment I, Steel N, Loke YK, Arthur A, et al. Anticholinergic drugs and risk of dementia: case-control study. BMJ 2018;361:k1315. - PMC - PubMed
Riley 2019
    1. Riley RD, Moons KG, Snell KI, Ensor J, Hooft L, Altman DG, et al. A guide to systematic review and meta-analysis of prognostic factor studies. BMJ 2019;30:k4597. - PubMed
Román 1993
    1. Román GC, Tatemichi TK, Erkinjutti T, Cummings JL, Masdeu JC, Garcia JH, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 1993;43:250-60. - PubMed
Ruxton 2015
    1. Ruxton K, Woodman RJ, Mangoni AA. Drugs with anticholinergic effects and cognitive impairment, falls and all-cause mortality in older adults: a systematic review and meta-analysis. British Journal of Clinical Pharmacology 2015;80(2):209-20. - PMC - PubMed
Schardt 2007
    1. Schardt C, Adams MB, Owens T, Keitz S, Fontelo P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Medical Informatics and Decision Making 2007;15:7-16. - PMC - PubMed
Singh 2008
    1. Singh S, Loke YK, Furberg CD. Inhaled anticholinergics and risk of major adverse cardiovascular events in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. JAMA 2008;300:1439-50. - PubMed
Stewart 2020
    1. Stewart C, Yrjana K, Kishor M, Soiza R, Taylor-Rowan M, Quinn TJ, et al. Anticholinergic burden measures predict older people's physical function and quality of life: a systematic review. Journal of the American Medical Directors Association 2020:S1525-8610. - PubMed
Tierney 2007
    1. Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007;8:16. - PMC - PubMed
WHO 1992
    1. World Health Organization. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines, 1992. apps.who.int/iris/handle/10665/37958 (accessed prior to 27 April 2021).
Wimo 2017
    1. Wimo A, Guerchet M, Ali GC, Wu YT, Prina AM, Winblad B, et al. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimer's & Dementia 2017;1:1-7. - PMC - PubMed
Winbald 2004
    1. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment – beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine 2004;256:240-6. - PubMed

References to other published versions of this review

Quinn 2020
    1. Quinn TJ, Myint PK, McCleery J, Taylor-Rowan M, Stewart C. Anticholinergic burden (prognostic factor) for prediction of dementia or cognitive decline in older adults with no known cognitive syndrome. Cochrane Database of Systematic Reviews 2020, Issue 2. Art. No: CD013540. [DOI: 10.1002/14651858.CD013540] - DOI - PMC - PubMed

Publication types

Substances