Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun;49(4):275-285.
doi: 10.5543/tkda.2021.69548.

Cardiovascular disintegration: A conceptual, model-based approach to heart failure hemodynamics

Affiliations
Free article

Cardiovascular disintegration: A conceptual, model-based approach to heart failure hemodynamics

Emre Aslanger et al. Turk Kardiyol Dern Ars. 2021 Jun.
Free article

Abstract

Objective: The current understanding of heart failure (HF) largely centers round left ventricular (LV) function; however, disorders in serial integration of cardiovascular system may cause a hemodynamic picture similar to left-sided HF. Therefore, focusing only on LV function may be a limited and misleading approach. We hypothesized that cardiovascular system has four major integration points, and disintegration in any of these points may produce the hemodynamic picture of HF.

Methods: We used a computational model in which mechanical properties of each chamber were characterized using time-varying elastance, and vascular beds were modeled by series of capacitances and resistances. The required percent changes in stressed volume (Vstressed) was presented as a measure of congestion susceptibility.

Results: As mean systemic pressure is closely correlated with pulmonary capillary wedge pressure (PCWP), arteriovenous disintegration can create a diastolic dysfunction pattern, even without any change in diastolic function. For 10%, 20%, 30%, 40%, and 50% interventricular disintegration, required Vstressed for reaching a PCWP over 20 mmHg was decreased by 42.0%, 31.2%, 22.5%, 15%, and 8.3%, respectively. Systolodiastolic disintegration, namely combined changes in the end-diastolic and systolic pressure-volume curves and ventriculoarterial disintegration significantly decreases the required percent change in Vstressed for generating congestion.

Conclusion: Four disintegration points can produce the hemodynamic picture of HF, which indicates that combination of even seemingly mild abnormalities is more important than an isolated abnormality in a single function of a single chamber. Our findings suggest that a "cardiovascular disintegration" perspective may provide a different approach for assessing the HF syndrome.

PubMed Disclaimer

MeSH terms

LinkOut - more resources