Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2021 Jun 10;23(1):68.
doi: 10.1186/s12968-021-00764-x.

T2-mapping increase is the prevalent imaging biomarker of myocardial involvement in active COVID-19: a Cardiovascular Magnetic Resonance study

Affiliations
Observational Study

T2-mapping increase is the prevalent imaging biomarker of myocardial involvement in active COVID-19: a Cardiovascular Magnetic Resonance study

Nicola Galea et al. J Cardiovasc Magn Reson. .

Abstract

Background: Early detection of myocardial involvement can be relevant in coronavirus disease 2019 (COVID-19) patients to timely target symptomatic treatment and decrease the occurrence of the cardiac sequelae of the infection. The aim of the present study was to assess the clinical value of cardiovascular magnetic resonance (CMR) in characterizing myocardial damage in active COVID-19 patients, through the correlation between qualitative and quantitative imaging biomarkers with clinical and laboratory evidence of myocardial injury.

Methods: In this retrospective observational cohort study, we enrolled 27 patients with diagnosis of active COVID-19 and suspected cardiac involvement, referred to our institution for CMR between March 2020 and January 2021. Clinical and laboratory characteristics, including high sensitivity troponin T (hs-cTnT), and CMR imaging data were obtained. Relationships between CMR parameters, clinical and laboratory findings were explored. Comparisons were made with age-, sex- and risk factor-matched control group of 27 individuals, including healthy controls and patients without other signs or history of myocardial disease, who underwent CMR examination between January 2020 and January 2021.

Results: The median (IQR) time interval between COVID-19 diagnosis and CMR examination was 20 (13.5-31.5) days. Hs-cTnT values were collected within 24 h prior to CMR and resulted abnormally increased in 18 patients (66.6%). A total of 20 cases (74%) presented tissue signal abnormalities, including increased myocardial native T1 (n = 11), myocardial T2 (n = 14) and extracellular volume fraction (ECV) (n = 10), late gadolinium enhancement (LGE) (n = 12) or pericardial enhancement (n = 2). A CMR diagnosis of myocarditis was established in 9 (33.3%), pericarditis in 2 (7.4%) and myocardial infarction with non-obstructive coronary arteries in 3 (11.11%) patients. T2 mapping values showed a moderate positive linear correlation with Hs-cTnT (r = 0.58; p = 0.002). A high degree positive linear correlation between ECV and Hs-cTnT was also found (r 0.77; p < 0.001).

Conclusions: CMR allows in vivo recognition and characterization of myocardial damage in a cohort of selected COVID-19 individuals by means of a multiparametric scanning protocol including conventional imaging and T1-T2 mapping sequences. Abnormal T2 mapping was the most commonly abnormality observed in our cohort and positively correlated with hs-cTnT values, reflecting the predominant edematous changes characterizing the active phase of disease.

Keywords: COVID-19; Cardiovascular Magnetic Resonance; Inflammation; Myocarditis; SARS-CoV-2; Troponin.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
The wide spectrum of cardiac involvement in Coronavirus disease 2019 (COVID-19) patients. The drawing shows the different patterns of cardiac injury, corresponding to isolated myocardial edematous changes (upper left box, T2 map with increased T2 values), myocarditis (upper right box, short tau inversion recovery (STIR) T2 weighted image with subepicardial band of edema), pericarditis (lower left box, pericardial effusion on cine cardiovascular magnetic resonance (cMR) image) and myocardial infarction (lower right box, subendocardial enhancement on late gadolinium enhancement (LGE) image)
Fig. 2
Fig. 2
Diagnostic Performance of high sensitive troponin T (hs-cTnT) in the detection of COVID-19 related myocardial injury assessed by T2 imaging. ROC curve illustrates the diagnostic performance of hs-cTnT to detect increase of myocardial T2 value (T2 > 49.9 ms): area under curve = 0.805; 95% confidence interval: 0.626–0.984, p = 0.007). ROC, receiver operating characteristics; Hs-cTnT, high-sensitive troponin T
Fig. 3
Fig. 3
Box plot graphs of native T1, T2 and ECV comparing patients with hs-cTnT values higher or lower than 0.0215 ng/ml. Comparison between patients with high versus low hs-cTnT values in terms of native T1, T2 and ECV. In all the box plots the top of the box represents the third quartile and the bottom the first quartile. The horizontal line represents the median for entire cohort. The whiskers go from each quartile to the minimum or maximum. *p < 0.05

References

    1. Atri D, Siddiqi HK, Lang JP, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the cardiologist: basic virology, epidemiology, cardiac manifestations, and potential therapeutic strategies. JACC Basic Transl Sci. 2020;5(5):518–536. doi: 10.1016/j.jacbts.2020.04.002. - DOI - PMC - PubMed
    1. Catapano F, Marchitelli L, Cundari G, Cilia F, Mancuso G, Pambianchi G, et al. Role of advanced imaging in COVID-19 cardiovascular complications. Insights Imaging [Internet]. 2021 Feb 24 [cited 2021 Mar 3];12(1):28. http://www.ncbi.nlm.nih.gov/pubmed/33625637. - PMC - PubMed
    1. Alpert JS, Antman E, Apple F, Armstrong PW, Bassand JP, De Luna AB, et al. Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology committee for the redefinition of myocardial infarction. Eur Heart J. 2000;21:1502–1513. doi: 10.1053/euhj.2000.2305. - DOI - PubMed
    1. Lala A, Johnson KW, Januzzi JL, Russak AJ, Paranjpe I, Richter F, et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J Am Coll Cardiol. 2020;76(5):533–546. doi: 10.1016/j.jacc.2020.06.007. - DOI - PMC - PubMed
    1. Wei JF, Huang FY, Xiong TY, Liu Q, Chen H, Wang H, et al. Acute myocardial injury is common in patients with COVID-19 and impairs their prognosis. Heart. 2020;106(15):1154–1159. doi: 10.1136/heartjnl-2020-317007. - DOI - PMC - PubMed

Publication types