Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug;64(8):1749-1759.
doi: 10.1007/s00125-021-05464-w. Epub 2021 Jun 10.

Markers of metabolic health and gut microbiome diversity: findings from two population-based cohort studies

Affiliations

Markers of metabolic health and gut microbiome diversity: findings from two population-based cohort studies

Semi Zouiouich et al. Diabetologia. 2021 Aug.

Abstract

Aims/hypothesis: The gut microbiome is hypothesised to be related to insulin resistance and other metabolic variables. However, data from population-based studies are limited. We investigated associations between serologic measures of metabolic health and the gut microbiome in the Northern Finland Birth Cohort 1966 (NFBC1966) and the TwinsUK cohort.

Methods: Among 506 individuals from the NFBC1966 with available faecal microbiome (16S rRNA gene sequence) data, we estimated associations between gut microbiome diversity metrics and serologic levels of HOMA for insulin resistance (HOMA-IR), HbA1c and C-reactive protein (CRP) using multivariable linear regression models adjusted for sex, smoking status and BMI. Associations between gut microbiome diversity measures and HOMA-IR and CRP were replicated in 1140 adult participants from TwinsUK, with available faecal microbiome (16S rRNA gene sequence) data. For both cohorts, we used general linear models with a quasi-Poisson distribution and Microbiome Regression-based Kernel Association Test (MiRKAT) to estimate associations of metabolic variables with alpha- and beta diversity metrics, respectively, and generalised additive models for location scale and shape (GAMLSS) fitted with the zero-inflated beta distribution to identify taxa associated with the metabolic markers.

Results: In NFBC1966, alpha diversity was lower in individuals with higher HOMA-IR with a mean of 74.4 (95% CI 70.7, 78.3) amplicon sequence variants (ASVs) for the first quartile of HOMA-IR and 66.6 (95% CI 62.9, 70.4) for the fourth quartile of HOMA-IR. Alpha diversity was also lower with higher HbA1c (number of ASVs and Shannon's diversity, p < 0.001 and p = 0.003, respectively) and higher CRP (number of ASVs, p = 0.025), even after adjustment for BMI and other potential confounders. In TwinsUK, alpha diversity measures were also lower among participants with higher measures of HOMA-IR and CRP. When considering beta diversity measures, we found that microbial community profiles were associated with HOMA-IR in NFBC1966 and TwinsUK, using multivariate MiRKAT models, with binomial deviance dissimilarity p values of <0.001. In GAMLSS models, the relative abundances of individual genera Prevotella and Blautia were associated with HOMA-IR in both cohorts.

Conclusions/interpretation: Overall, higher levels of HOMA-IR, CRP and HbA1c were associated with lower microbiome diversity in both the NFBC1966 and TwinsUK cohorts, even after adjustment for BMI and other variables. These results from two distinct population-based cohorts provide evidence for an association between metabolic variables and gut microbial diversity. Further experimental and mechanistic insights are now needed to provide understanding of the potential causal mechanisms that may link the gut microbiota with metabolic health.

Keywords: Faecal microbiome; HOMA-IR; Insulin resistance; Metabolic health.

PubMed Disclaimer

References

    1. Jaacks LM, Vandevijvere S, Pan A, et al. The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 2019;7(3):231–240. doi: 10.1016/S2213-8587(19)30026-9. - DOI - PMC - PubMed
    1. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98. doi: 10.1038/nrendo.2017.151. - DOI - PubMed
    1. Taylor R. Insulin Resistance and Type 2 Diabetes. Diabetes. 2012;61(4):778–779. doi: 10.2337/db12-0073. - DOI - PMC - PubMed
    1. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–846. doi: 10.1038/nature05482. - DOI - PubMed
    1. Owei I, Umekwe N, Provo C, Wan J, Dagogo-Jack S. Insulin-sensitive and insulin-resistant obese and non-obese phenotypes: role in prediction of incident pre-diabetes in a longitudinal biracial cohort. BMJ Open Diabetes Res Care. 2017;5(1):e000415. doi: 10.1136/bmjdrc-2017-000415. - DOI - PMC - PubMed

Publication types

MeSH terms