Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun 12;14(1):92.
doi: 10.1186/s13045-021-01102-5.

The relationship between expression of PD-L1 and HIF-1α in glioma cells under hypoxia

Affiliations

The relationship between expression of PD-L1 and HIF-1α in glioma cells under hypoxia

Xing-Chen Ding et al. J Hematol Oncol. .

Abstract

Hypoxia inducible factor-1α (HIF-1α) up-regulates the expression of programmed death ligand-1 (PD-L1) in some extracranial malignancies. However, whether it could increase PD-L1 expression in intracranial tumor is still unknown. Here, we explored the relationship between HIF-1α and PD-L1 expression in glioma, and investigated their clinical significance. In glioma patients, HIF-1α and PD-L1 were overexpressed in high grade glioma tissues and were significantly associated with poor survival. In glioma cells, PD-L1 expression was induced under hypoxia condition, and the enhanced PD-L1 expression was abrogated by either HIF-1α knock-down or HIF-1α inhibitor treatment. Furthermore, ChIP-qPCR analysis showed the direct binding of HIF-1α to PD-L1 proximal promoter region, providing evidence that HIF-1α up-regulates PD-L1 in glioma. In glioma murine model, the combination treatment with HIF-1α inhibitor and anti-PD-L1 antibody caused a more pronounced suppressive effect on tumor growth compared to either monotherapy. Immunologically, the combination treatment improved both dendritic cell (DC) and CD8+ T cell activation. Overall, our results demonstrated that positive correlation between PD-L1 and HIF-1α in glioma, and provide an alternative strategy, inhibiting HIF-1α, as combination therapies with immunotherapies to advance glioma treatment.

Keywords: Glioma; HIF-1 α; Hypoxia; Immunotherapy; PD-L1.

PubMed Disclaimer

Conflict of interest statement

The authors declare that there is no competing interests.

Figures

Fig. 1
Fig. 1
The relationship of PD-L1 and HIF-1α expression in tumor tissue of glioma patients and their impact on the overall survival. a Immunohistochemistry (IHC) analysis of HIF-1α and PD-L1 in tissue sections of glioma patients. Typical image of positive expressions of HIF-1α (≥ 1%) and PD-L1(≥ 5%) in tissue sections of one patient with grade IV glioma; Typical image of negative expressions of HIF-1α (< 1%) and PD-L1 (< 5%) in tissue sections of one patient with grade II glioma. b PD-L1 and HIF-1α expression in patients with different grades glioma. PD-L1 and HIF-1α expressions in high-grade glioma (HGG) group and low-grade glioma (LGG) group; PD-L1 and HIF-1α expressions in grade II to grade III groups; Correlation analysis of PD-L1 and HIF-1α expression (r = 0.412, P < 0.001) in all glioma patients in our cohort. For (A) to (B), the data were presented as mean ± SEM. *P < 0.05, ***P < 0.001. c The overall survival of glioma patients. Statistical significance was determined by log-rank (Mantel-Cox) test
Fig. 2
Fig. 2
Hypoxia up-regulate PD-L1 expression via HIF-1α in glioma cell lines and combination treatment with HIF-1α inhibitor and anti–PD-L1 antibody can reduce tumor growth in murine model of glioma. a qPCR analysis of HIF-1α and PD-L1 mRNA expression in U251 and U343 lines with different treatments as indicated. The qPCR data were normalized to GAPDH. The data were presented as mean ± SEM. P values were calculated by unpaired two-tailed Student’s t tests. *P < 0.05, **P < 0.01. b Western blot analysis of U251 and U343 cells with different treatments using indicated antibodies. c Chromatin immunoprecipitation (ChIP) analysis of the PD-L1 promoter in U251 cells using anti-HIF-1α mAb. The experiments were performed in triplicates and repeated three times. d Immunofluorescence staining of HIF-1α and PD-L1 expression in tumor cells analyzed by confocal microscopy. Representative images are shown. Scale bars, 50 μm. e Mice bearing GL261 cells were divided into the indicated treatment groups. The tumor volumes of mice treated with control, anti–PD-L1 monoclonal antibody, HIF-1α inhibitor (PX-478), or combined anti–PD-L1 antibody and PX-478 were measured and plotted (n = 5). Tumor volume was measured twice weekly. Data are presented as mean ± SEM. and the statistical significance was determined by two-way ANOVA. f Survival from mice receiving the indicated treatments as described in e. Statistical significance was determined by log-rank (Mantel-Cox) test. For (e) to (f) *P < 0.05, **P < 0.01. g The HE staining of intracranial tumor and immunohistochemistry analysis of CD8+ T cells in intracranial tumor from mice receiving control, anti–PD-L1 antibody, PX-478, or anti–PD-L1 antibody and PX-478. h Representative flow cytometry analysis and quantification of CD4+ T, CD8+ T, CD11c+ DC and CD11b+ myeloid cells populations in GL261 tumors with the indicated treatments (n = 5). i Quantification flow cytometry analysis of the PD-L1 expression on CD45, CD3+, CD11c+ and CD11b+ cells (n = 5). j Representative flow cytometry analysis and quantification of CD8+ INF- γ+ T cells in GL261 tumors and the MFI of INF- γ in CD8+ T cells in U261 tumors at day 14 after treatment (n = 5). For (h) to (j), data are presented as means ± SEM. P values were calculated by unpaired two-tailed Student’s t tests. *P < 0.05, **P < 0.01

References

    1. Filley AC, Henriquez M, Dey M. Recurrent glioma clinical trial, CheckMate-143: the game is not over yet. Oncotarget. 2017;8(53):91779–91794. doi: 10.18632/oncotarget.21586. - DOI - PMC - PubMed
    1. Kurz SC, Wen PY. Quo vadis-do immunotherapies have a role in glioblastoma? Curr Treat Options Neurol. 2018;20(5):14. doi: 10.1007/s11940-018-0499-0. - DOI - PubMed
    1. Hu M, Zhu Y, Mu D, Fan B, Zhao S, Yang G, et al. Correlation of hypoxia as measured by fluorine-18 fluoroerythronitroimidazole (18F-FETNIM) PET/CT and overall survival in glioma patients. Eur J Nucl Med Mol Imaging. 2020;47(6):1427–1434. doi: 10.1007/s00259-019-04621-z. - DOI - PubMed
    1. Akinleye A, Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol. 2019;12(1):92. doi: 10.1186/s13045-019-0779-5. - DOI - PMC - PubMed
    1. Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol. 2021;14(1):10. doi: 10.1186/s13045-020-01027-5. - DOI - PMC - PubMed

Publication types