Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep:166:215-224.
doi: 10.1016/j.plaphy.2021.05.046. Epub 2021 Jun 2.

Too dry to survive: Leaf hydraulic failure in two Salvia species can be predicted on the basis of water content

Affiliations
Free article

Too dry to survive: Leaf hydraulic failure in two Salvia species can be predicted on the basis of water content

Elisa Abate et al. Plant Physiol Biochem. 2021 Sep.
Free article

Abstract

Global warming is exposing plants to increased risks of drought-driven mortality. Recent advances suggest that hydraulic failure is a key process leading to plant death, and the identification of simple and reliable proxies of species-specific risk of irreversible hydraulic damage is urgently required. We assessed the predictive power of leaf water content and shrinkage for monitoring leaf hydraulic failure in two Mediterranean native species, Salvia ceratophylloides (Sc) and S. officinalis (So). The study species showed significant differences in relative water content (RWC) thresholds inducing loss of rehydration capacity, as well as leaf hydraulic conductance (KL) impairment. Sc turned out to be more resistant to drought than So. However, Sc and So showed different leaf saturated water content values, so that different RWC values actually corresponded to similar absolute leaf water content. Our findings suggest that absolute leaf water content and leaf water potential, but not RWC, are reliable parameters for predicting the risk of leaf hydraulic impairment of two Salvia species, and their potential risk of irreversible damage under severe drought. Moreover, the lack of any KL decline until the turgor loss point in Sc, coupled to consistent leaf shrinkage, rejects the hypothesis to use leaf shrinkage as a proxy to predict KL vulnerability, at least in species with high leaf capacitance. Robust linear correlations between KL decline and electrolyte leakage measurements suggested a role of membrane damage in driving leaf hydraulic collapse.

Keywords: Climate change; Leaf hydraulic failure; Leaf shrinkage; Mediterranean species; Membrane damages; Rehydration capacity; Water content.

PubMed Disclaimer

LinkOut - more resources