Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Oct;20(5):1767-1774.
doi: 10.1007/s10237-021-01475-z. Epub 2021 Jun 12.

Rapid, quantitative prediction of tumor invasiveness in non-melanoma skin cancers using mechanobiology-based assay

Affiliations

Rapid, quantitative prediction of tumor invasiveness in non-melanoma skin cancers using mechanobiology-based assay

Sally Kortam et al. Biomech Model Mechanobiol. 2021 Oct.

Abstract

Non-melanoma skin cancers, including basal and squamous cell carcinomas (BCC and SCC), are the most common malignancies worldwide. BCC/SCC cancers are generally highly localized and can be surgically excised; however, invasive tumors may be fatal. Current diagnosis of skin cancer and prognosis of potential invasiveness are based mainly on clinical-pathological factors of the biopsied lesions. SCC invasiveness is also predicted by histomorphological factors, such as the degree of differentiation or the mitotic index, while BCCs are typically considered non-invasive. The above subjective measures do not provide direct, objective prognosis of cellular invasiveness in each specific sample. Hence, we have developed a mechanobiology-based approach to rapidly determine sample invasiveness. Here, cells from 15 fresh tissue samples of suspected non-melanoma skin cancer were seeded on physiological-stiffness (2.4 kPa) synthetic gels, and within 1-h invasive cell subsets were observed to push/indent the gel surface; clinicopathological results were separately obtained using standard protocols. The percentage of indenting cells from invasive (26.2 ± 2.4%) and non-invasive (4.8 ± 0.5%) SCC samples differed significantly (p < 0.0001), with well-separated invasiveness cutoffs of, respectively, > 12% and < 5%. The mechanical invasiveness directly agrees with the SCC cell-differentiation state, where over 3.3-fold more (p < 0.0001) cells from moderately differentiated samples indent the gels as compared to well-differentiated cell samples. In BCCs, < 20% of cells typically indented, and a highly migratory, desmoplastic sample was identified with 46%. By providing rapid, quantitative, early prognosis of invasiveness and potential metastatic risk, our rapid technology may facilitate informed (bed-side) decision making and choice of disease-management protocols on the time-scale of the initial diagnosis and surgical excision.

Keywords: Cancer invasion; Early prognosis; Mechanobiology; Metastatic potential; Non-melanoma skin cancer.

PubMed Disclaimer

References

    1. Abidine Y, Laurent V, Michel R et al (2015) Physical properties of polyacrylamide gels probed by AFM and rheology. EPL 109:38003. https://doi.org/10.1209/0295-5075/109/38003%3e - DOI
    1. Alvarez-Elizondo MB, Weihs D (2017) Cell-gel mechanical interactions as an approach to rapidly and quantitatively reveal invasive subpopulations of metastatic cancer cells. Tissue Eng Part C Methods 23:180–187. https://doi.org/10.1089/ten.TEC.2016.0424 - DOI
    1. Apalla Z, Nashan D, Weller RB, Castellsagué X (2017) Skin Cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther (heidelb) 7:5–19 - DOI
    1. Barton V, Armeson K, Hampras S et al (2017) Nonmelanoma skin cancer and risk of all-cause and cancer-related mortality: a systematic review. Arch Dermatol Res 309:243–251. https://doi.org/10.1007/s00403-017-1724-5 - DOI
    1. Boudou T, Ohayon J, Picart C et al (2009) Nonlinear elastic properties of polyacrylamide gels: Implications for quantification of cellular forces. Biorheology 46:191–205. https://doi.org/10.3233/Bir-2009-0540 - DOI

MeSH terms

LinkOut - more resources