Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 22;11(27):7170-7176.
doi: 10.1039/d0sc01914c.

Direct catalytic asymmetric and anti-selective vinylogous addition of butenolides to chromones

Affiliations

Direct catalytic asymmetric and anti-selective vinylogous addition of butenolides to chromones

Jin Cui et al. Chem Sci. .

Abstract

An anti-selective catalytic asymmetric Michael-type vinylogous addition of β,γ-butenolides to chromones was developed. The catalyst system developed herein is characterized by tuning of the steric and electronic effects using a proper Biphep-type chiral ligand to invert the diastereoselection, and improvement of the catalyst turnover by a coordinative phenolic additive. The catalytic protocol renders potentially biologically active natural product analogs accessible in good yield with moderate diastereoselectivity and high enantiomeric purity, mostly greater than 99% ee.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest to declare.

Figures

Fig. 1
Fig. 1. Structure of chromanone lactone natural products.
Fig. 2
Fig. 2. Rationale for intrinsic syn-selectivity of vinylogous addition of butenolide to chromone (ref. 10).
Fig. 3
Fig. 3. Screening of phenol additives for the direct vinylogous addition of butenolides to chromones and the reactions with Barton's base-free conditions.
Fig. 4
Fig. 4. Proposed catalytic cycle and TS of the present vinylogous addition of butenolide to chromone.
Fig. 5
Fig. 5. Substrate scope of the vinylogous addition of butenolide to chromone.
Scheme 1
Scheme 1. Gram-scale protocol with reduced catalyst loading.

References

    1. Shibasaki M. Kanai M. Matsunaga S. Kumagai N. Acc. Chem. Res. 2009;42:1117. doi: 10.1021/ar9000108. - DOI - PubMed
    1. For review direct catalytic asymmetric aldol- and Michael-type reaction:

    2. Yamashita Y. Yasukawa T. Yoo W.-J. Kitanosono T. Kobayashi S. Chem. Soc. Rev. 2017;47:4388. doi: 10.1039/C7CS00824D. - DOI - PubMed
    3. Trost B. M. Brindle C. S. Chem. Soc. Rev. 2010;39:1600. doi: 10.1039/C7CS00824D. - DOI - PMC - PubMed
    4. Kumagai N. Shibasaki M. Angew. Chem., Int. Ed. 2011;50:4760. doi: 10.1039/C7CS00824D. - DOI - PubMed
    1. Sasai H. Suzuki T. Arai S. Arai T. Shibasaki M. J. Am. Chem. Soc. 1992;114:4418. doi: 10.1021/ja00037a068. - DOI
    2. ; see also

    3. Sasai H. Suzuki T. Itoh N. Tanaka K. Date T. Okamura K. Shibasaki M. J. Am. Chem. Soc. 1993;115:10372. doi: 10.1021/ja00037a068. - DOI
    4. Sasai H. Tokunaga T. Watanabe S. Suzuki T. Itoh N. Shibasaki M. J. Org. Chem. 1995;60:7388. doi: 10.1021/ja00037a068. - DOI
    1. Yamada Y. M. A. Yoshikawa N. Sasai H. Shibasaki M. Angew. Chem., Int. Ed. Engl. 1997;36:1871. doi: 10.1002/anie.199718711. - DOI
    2. ; see also

    3. Yoshikawa N. Yamada Y. M. A. Das H. J. Sasai H. Shibasaki M. J. Am. Chem. Soc. 1999;121:4168. doi: 10.1002/anie.199718711. - DOI
    4. Yoshikawa N. Kumagai N. Matsunaga S. Moll G. Ohshima T. Suzuki T. Shibasaki M. J. Am. Chem. Soc. 2001;123:2466. doi: 10.1002/anie.199718711. - DOI - PubMed
    5. ; for another pioneering work of direct catalytic asymmetric aldol reaction, see

    6. Trost B. M. Ito H. J. Am. Chem. Soc. 2000;122:12003. doi: 10.1002/anie.199718711. - DOI
    7. List B. Lerner R. A. Barbas C. F. J. Am. Chem. Soc. 2000;122:2395. doi: 10.1002/anie.199718711. - DOI
    1. Sasai H. Arai T. Satow Y. Houk K. N. Shibasaki M. J. Am. Chem. Soc. 1995;117:6194. doi: 10.1021/ja00128a005. - DOI
    2. ; see also

    3. Sasai H. Arai T. Shibasaki M. J. Am. Chem. Soc. 1994;116:1571. doi: 10.1021/ja00128a005. - DOI