Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun 22;11(27):7210-7213.
doi: 10.1039/d0sc02178d.

Cobalt-catalyzed aminocarbonylation of (hetero)aryl halides promoted by visible light

Affiliations

Cobalt-catalyzed aminocarbonylation of (hetero)aryl halides promoted by visible light

Alexander M Veatch et al. Chem Sci. .

Abstract

The catalytic aminocarbonylation of (hetero)aryl halides is widely applied in the synthesis of amides but relies heavily on the use of precious metal catalysis. Herein, we report an aminocarbonylation of (hetero)aryl halides using a simple cobalt catalyst under visible light irradiation. The reaction extends to the use of (hetero)aryl chlorides and is successful with a broad range of amine nucleophiles. Mechanistic investigations are consistent with a reaction proceeding via intermolecular charge transfer involving a donor-acceptor complex of the substrate and cobaltate catalyst.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Cobalt-catalyzed aminocarbonylations of sp2 C–X electrophiles.
Fig. 2
Fig. 2. Aminocarbonylation of diverse (hetero)aryl electrophiles. a10 mol% Co2(CO)8 used as catalyst. b10 mol% Co2(CO)8 used as catalyst under 370 nm LEDs. cCyclohexylamine used as the nucleophile, reaction time of 24 h. dSubstrate HCl salt used, 3 equiv. of TMP used as base. e20 mol% Co2(CO)8 used as catalyst, reaction time of 144 h.
Fig. 3
Fig. 3. Cobalt-catalyzed aminocarbonylation of 1-bromo-4-methoxybenzene using diverse amine nucleophiles. aReaction time of 24 h. b10 mol% Co2(CO)8 used as catalyst with ammonium carbamate as nucleophile in the presence of 4 Å molecular sieves. c10 mol% KCo(CO)4 used as catalyst with 4.0 equiv. of KOH as nucleophile.
Fig. 4
Fig. 4. UV-vis absorption spectra of bromobenzene and KCo(CO)4 in THF with [10 μM].
Scheme 1
Scheme 1. Plausible catalytic cycle for the cobalt-catalyzed aminocarbonylation.

References

    1. Brennführer A. Neumann H. Beller M. Angew. Chem., Int. Ed. 2009;48:4114–4133. doi: 10.1002/anie.200900013. - DOI - PubMed
    2. Allen C. L. Williams J. M. Chem. Soc. Rev. 2011;40:3405–3415. doi: 10.1039/C0CS00196A. - DOI - PubMed
    3. Gadge S. T. Bhanage B. M. RSC Adv. 2014;4:10367–10389. doi: 10.1039/C3RA46273K. - DOI
    4. Hernandez L. W. Pospech J. Klöckner U. Bingham T. W. Sarlah D. J. Am. Chem. Soc. 2017;139:15656–15659. doi: 10.1021/jacs.7b10351. - DOI - PMC - PubMed
    5. Atkins R. J. Banks A. Bellingham R. K. Breen G. F. Carey J. S. Etridge S. K. Hayes J. F. Hussain N. Morgan D. O. Oxley P. et al. . Org. Process Res. Dev. 2003;7:663–675. doi: 10.1021/op034023k. - DOI
    1. Schoenberg A. Heck R. F. J. Org. Chem. 1974;39:3327–3331. doi: 10.1021/jo00937a004. - DOI
    1. Wang J. Y. Strom A. E. Hartwig J. F. J. Am. Chem. Soc. 2018;140:7979–7993. doi: 10.1021/jacs.8b04073. - DOI - PMC - PubMed
    2. Martinelli J. R. Watson D. A. Freckmann D. M. M. Barder T. E. Buchwald S. L. J. Org. Chem. 2008;73:7102–7107. doi: 10.1021/jo801279r. - DOI - PMC - PubMed
    3. Barnard C. F. J. Organometallics. 2008;27:5402–5422. doi: 10.1021/om800549q. - DOI
    4. Friis S. D. Skrydstrup T. Buchwald S. L. Org. Lett. 2014;16:4296–4299. doi: 10.1021/ol502014b. - DOI - PMC - PubMed
    5. Gockel S. N. Hull K. L. Org. Lett. 2015;17:3236–3239. doi: 10.1021/acs.orglett.5b01385. - DOI - PubMed
    1. For aminocarbonylations not involving simple amine coupling partners (aryl carbamoylation), see:

    2. Wen X.-P. Han Y.-L. Chen J.-X. RSC Adv. 2017;7:45107–45112. doi: 10.1039/C7RA08009C. - DOI
    3. Lindsay C. M. Widdowson D. A. J. Chem. Soc., Perkin Trans. 1. 1988;3:569. doi: 10.1039/P19880000569. - DOI
    4. Alandini N. Buzzetti L. Favi G. Schulte T. Candish L. Collins K. D. Melchiorre P. Angew. Chem., Int. Ed. 2020;59:5248–5253. doi: 10.1002/anie.202000224. - DOI - PMC - PubMed
    1. Brunet J.-J. Sidot C. Loubinoux B. Caubère P. J. Org. Chem. 1979;44:2199–2202. doi: 10.1021/jo01327a035. - DOI
    2. Brunet J.-J. Sidot C. Caubère P. Tetrahedron Lett. 1981;22:1013–1016. doi: 10.1016/S0040-4039(01)82853-7. - DOI
    3. Brunet J.-J. Sidot C. Caubère P. J. Org. Chem. 1983;48:1166–1171. doi: 10.1021/jo00156a004. - DOI
    4. Marchal J. Bodiguel J. Fort Y. Caubère P. J. Org. Chem. 1995;60:8336–8340. doi: 10.1021/jo00131a005. - DOI
    5. Vanderesse R. Marchal J. Caubère P. Synth. Commun. 1993;23:1361–1370. doi: 10.1080/00397919308011224. - DOI