Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 25;11(3):833-838.
doi: 10.1039/c9sc04632a.

Persistent organic room temperature phosphorescence: what is the role of molecular dimers?

Affiliations

Persistent organic room temperature phosphorescence: what is the role of molecular dimers?

Yunsheng Wang et al. Chem Sci. .

Abstract

Molecular dimers have been frequently found to play an important role in room temperature phosphorescence (RTP), but its inherent working mechanism has remained unclear. Herein a series of unique characteristics, including singlet excimer emission and thermally activated delayed fluorescence, were successfully integrated into a new RTP luminogen of CS-2COOCH3 to clearly reveal the excited-state process of RTP and the special role of molecular dimers in persistent RTP emission.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. (A) The query about the role of dimers in the persistent RTP effect and the proposed solution, in which F1 indicates monomer-dominated fluorescence, P1 indicates monomer-dominated RTP, F2 indicates singlet excimer fluorescence and P2 indicates possible triplet excimer RTP. (B) The molecular structure and design strategy of CS-2COOCH3.
Fig. 2
Fig. 2. (A) The normalized steady-state PL spectra of CS-2COOCH3 in different states—crystal, ground state and doped in poly(methyl methacrylate) (PMMA) film in air. (B) The fluorescence decay curves of CS-2COOCH3 crystal at 405 and 505 nm in air. (C) The RTP spectra, acquired after 10 ms delay, of CS-2COOCH3 in different states—crystal, ground state and doped in PMMA film under air atmosphere. (D) The RTP decay curves of CS-2COOCH3 crystal at 430, 460 and 490 nm. Insets: photos of CS-2COOCH3 crystal before and after turning off 365 nm UV radiation in air.
Fig. 3
Fig. 3. Normalized PL spectra of CS-2COOCH3 crystal from 77 K to 298 K.
Fig. 4
Fig. 4. (A) The single-crystal structure and molecular dimer (side view and top view) of CS-2COOCH3. (B) The natural transition orbitals (NTOs) of the T1 state for the monomer and dimer of CS-2COOCH3.
Fig. 5
Fig. 5. Changing tendency of the fluorescent radiative rate (kr) and non-radiative rate (knr) for CS-2COOCH3 in different states.
Fig. 6
Fig. 6. The proposed PL process of CS-2COOCH3.

References

    1. Kabe R. Adachi C. Nature. 2017;550:384–387. doi: 10.1038/nature24010. - DOI - PubMed
    2. Fateminia S. Mao Z. Xu S. Yang Z. Chi Z. Liu B. Angew. Chem., Int. Ed. 2017;56:12160–12164. doi: 10.1002/anie.201705945. - DOI - PubMed
    3. Fang M. Yang J. Xiang X. Xie Y. Dong Y. Peng Q. Li Q. Li Z. Mater. Chem. Front. 2018;2:2124–2129. doi: 10.1039/C8QM00396C. - DOI
    4. Huang L. Chen B. Zhang X. Trindle C. Liao F. Wang Y. Miao H. Luo Y. Zhang G. Angew. Chem., Int. Ed. 2018;57:16046–16050. doi: 10.1002/anie.201808861. - DOI - PubMed
    5. Salla C. A. M. Farias G. Rouzières M. Dechambenoit P. Durola F. Bock H. Souza B. d. Bechtold I. H. Angew. Chem., Int. Ed. 2019;58:6982–6986. doi: 10.1002/anie.201901672. - DOI - PubMed
    6. Hirata S. Adv. Sci. 2019;6:1900410. doi: 10.1002/advs.201900410. - DOI - PMC - PubMed
    7. Jinnai K. Kabe R. Adachi C. Adv. Mater. 2018:1800365. doi: 10.1002/adma.201800365. - DOI - PubMed
    8. Ogoshi T. Tsuchida H. Kakuta T. Yamagishi T. Taema A. Ono T. Sugimoto M. Mizuno M. Adv. Funct. Mater. 2018:1707369. doi: 10.1002/adfm.201707369. - DOI
    9. Shoji Y. Ikabata Y. Wang Q. Nemoto D. Sakamoto A. Tanaka N. Seino J. Nakai H. Fukushima T. J. Am. Chem. Soc. 2017;1397:2728–2733. doi: 10.1021/jacs.6b11984. - DOI - PubMed
    10. Ward J. S. Nobuyasu R. S. Batsanov A. S. Data P. Monkman A. P. Diasb B. Bryce M. R. Chem. Commun. 2016;52:2612–2615. doi: 10.1039/C5CC09645F. - DOI - PubMed
    1. Kenry Chen C. Liu B. Nat. Commun. 2019;10:2111. doi: 10.1038/s41467-019-10033-2. - DOI - PMC - PubMed
    2. Ma X. Wang J. Tian H. Acc. Chem. Res. 2019;52:738–748. doi: 10.1021/acs.accounts.8b00620. - DOI - PubMed
    3. Hirata S. Adv. Opt. Mater. 2017:1700116. doi: 10.1002/adom.201700116. - DOI
    1. Yang J. Ren Z. Xie Z. Liu Y. Wang C. Xie Y. Peng Q. Xu B. Tian W. Zhang F. Chi Z. Li Q. Li Z. Angew. Chem., Int. Ed. 2017;56:880–884. doi: 10.1002/anie.201610453. - DOI - PubMed
    2. Yang J. Gao X. Xie Z. Gong Y. Fang M. Peng Q. Chi Z. Li Z. Angew. Chem., Int. Ed. 2017;56:15299–15303. doi: 10.1002/anie.201708119. - DOI - PubMed
    3. Cai S. Shi H. Tian D. Ma H. Cheng Z. Wu Q. Gu M. Huang L. An Z. Peng Q. Huang W. Adv. Funct. Mater. 2018:1705045. doi: 10.1002/adfm.201705045. - DOI
    4. Lucenti E. Forni A. Botta C. Carlucci L. Giannini C. Marinotto D. Pavanello A. Previtali A. Righetto S. Cariati E. Angew. Chem., Int. Ed. 2017;56:16302–16307. doi: 10.1002/anie.201710279. - DOI - PubMed
    5. Li Q. Tang Y. Hu W. Li Z. Small. 2018:1801560. doi: 10.1002/smll.201801560. - DOI - PubMed
    6. Zhou B. Yan D. Adv. Funct. Mater. 2019;29:1807599. doi: 10.1002/adfm.201807599. - DOI
    7. Yuan J. Wang S. Ji Y. Chen R. Zhu Q. Wang Y. Zheng C. Tao Y. Fan Q. Huang W. Mater. Horiz. 2019;6:1259–1264. doi: 10.1039/C9MH00220K. - DOI
    8. Yang J. Chi Z. Zhu W. Tang B. Li Z. Sci. China: Chem. 2019;62:1090–1098. doi: 10.1007/s11426-019-9512-x. - DOI
    9. Fang M. Yang J. Li Z. Chin. J. Polym. Sci. 2019;37:383–393. doi: 10.1007/s10118-019-2218-z. - DOI
    10. Li Q. Li Z. Sci. China Mater. 2019 doi: 10.1007/s40843-019-1172-2. - DOI
    11. Chen X. Luo W. Ma H. Peng Q. Yuan W. Zhang Y. Sci. China: Chem. 2018;61:351–359. doi: 10.1007/s11426-017-9114-4. - DOI
    1. An Z. Zheng C. Tao Y. Chen R. Shi H. Chen T. Wang Z. Li H. Deng R. Liu X. Huang W. Nat. Mater. 2015;14:685–690. doi: 10.1038/nmat4259. - DOI - PubMed
    2. Gu L. Shi H. Bian L. Gu M. Ling K. Wang X. Ma H. Cai S. Ning W. Fu L. Wang H. Wang S. Gao Y. Yao W. Huo F. Tao Y. An Z. Liu X. Huang W. Nat. Photonics. 2019;13:373–375. doi: 10.1038/s41566-019-0447-x. - DOI
    3. Yang Z. Mao Z. Zhang X. Ou D. Mu Y. Zhang Y. Zhao C. Liu S. Chi Z. Xu J. Wu Y. Lu P. Lien A. Bryce M. R. Angew. Chem., Int. Ed. 2016;55:2181–2185. doi: 10.1002/anie.201509224. - DOI - PMC - PubMed
    4. Yang J. Zhen X. Wang B. Gao X. Ren Z. Wang J. Xie Y. Li J. Peng Q. Pu K. Li Z. Nat. Commun. 2018;9:840. doi: 10.1038/s41467-018-03236-6. - DOI - PMC - PubMed
    5. Yang J. Gao H. Wang Y. Yu Y. Gong Y. Fang M. Ding D. Hu W. Tang B. Z. Li Z. Mater. Chem. Front. 2019;3:1391–1397. doi: 10.1039/C9QM00108E. - DOI
    6. Wang X. Xiao H. Chen P. Yang Q. Chen B. Tung C. Chen Y. Wu L. J. Am. Chem. Soc. 2019;141:5045–5050. doi: 10.1021/jacs.9b00859. - DOI - PubMed
    1. Wei Y. Zhang Z. Chen Y. Wu C. Liu Z. Ho S. Liu J. Lin J. Chou P. Chem. Commun. 2019;2:10. doi: 10.1038/s42004-019-0113-8. - DOI
    2. Yuan M. Wang D. Xue P. Wang W. Wang J. Tu Q. Liu Z. Liu Y. Zhang Y. Wang J. Chem. Mater. 2014;26:2467–2477. doi: 10.1021/cm500441r. - DOI