Persistent organic room temperature phosphorescence: what is the role of molecular dimers?
- PMID: 34123059
- PMCID: PMC8146318
- DOI: 10.1039/c9sc04632a
Persistent organic room temperature phosphorescence: what is the role of molecular dimers?
Abstract
Molecular dimers have been frequently found to play an important role in room temperature phosphorescence (RTP), but its inherent working mechanism has remained unclear. Herein a series of unique characteristics, including singlet excimer emission and thermally activated delayed fluorescence, were successfully integrated into a new RTP luminogen of CS-2COOCH3 to clearly reveal the excited-state process of RTP and the special role of molecular dimers in persistent RTP emission.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures






References
-
- Kabe R. Adachi C. Nature. 2017;550:384–387. doi: 10.1038/nature24010. - DOI - PubMed
- Fateminia S. Mao Z. Xu S. Yang Z. Chi Z. Liu B. Angew. Chem., Int. Ed. 2017;56:12160–12164. doi: 10.1002/anie.201705945. - DOI - PubMed
- Fang M. Yang J. Xiang X. Xie Y. Dong Y. Peng Q. Li Q. Li Z. Mater. Chem. Front. 2018;2:2124–2129. doi: 10.1039/C8QM00396C. - DOI
- Huang L. Chen B. Zhang X. Trindle C. Liao F. Wang Y. Miao H. Luo Y. Zhang G. Angew. Chem., Int. Ed. 2018;57:16046–16050. doi: 10.1002/anie.201808861. - DOI - PubMed
- Salla C. A. M. Farias G. Rouzières M. Dechambenoit P. Durola F. Bock H. Souza B. d. Bechtold I. H. Angew. Chem., Int. Ed. 2019;58:6982–6986. doi: 10.1002/anie.201901672. - DOI - PubMed
- Hirata S. Adv. Sci. 2019;6:1900410. doi: 10.1002/advs.201900410. - DOI - PMC - PubMed
- Jinnai K. Kabe R. Adachi C. Adv. Mater. 2018:1800365. doi: 10.1002/adma.201800365. - DOI - PubMed
- Ogoshi T. Tsuchida H. Kakuta T. Yamagishi T. Taema A. Ono T. Sugimoto M. Mizuno M. Adv. Funct. Mater. 2018:1707369. doi: 10.1002/adfm.201707369. - DOI
- Shoji Y. Ikabata Y. Wang Q. Nemoto D. Sakamoto A. Tanaka N. Seino J. Nakai H. Fukushima T. J. Am. Chem. Soc. 2017;1397:2728–2733. doi: 10.1021/jacs.6b11984. - DOI - PubMed
- Ward J. S. Nobuyasu R. S. Batsanov A. S. Data P. Monkman A. P. Diasb B. Bryce M. R. Chem. Commun. 2016;52:2612–2615. doi: 10.1039/C5CC09645F. - DOI - PubMed
-
- Yang J. Ren Z. Xie Z. Liu Y. Wang C. Xie Y. Peng Q. Xu B. Tian W. Zhang F. Chi Z. Li Q. Li Z. Angew. Chem., Int. Ed. 2017;56:880–884. doi: 10.1002/anie.201610453. - DOI - PubMed
- Yang J. Gao X. Xie Z. Gong Y. Fang M. Peng Q. Chi Z. Li Z. Angew. Chem., Int. Ed. 2017;56:15299–15303. doi: 10.1002/anie.201708119. - DOI - PubMed
- Cai S. Shi H. Tian D. Ma H. Cheng Z. Wu Q. Gu M. Huang L. An Z. Peng Q. Huang W. Adv. Funct. Mater. 2018:1705045. doi: 10.1002/adfm.201705045. - DOI
- Lucenti E. Forni A. Botta C. Carlucci L. Giannini C. Marinotto D. Pavanello A. Previtali A. Righetto S. Cariati E. Angew. Chem., Int. Ed. 2017;56:16302–16307. doi: 10.1002/anie.201710279. - DOI - PubMed
- Li Q. Tang Y. Hu W. Li Z. Small. 2018:1801560. doi: 10.1002/smll.201801560. - DOI - PubMed
- Zhou B. Yan D. Adv. Funct. Mater. 2019;29:1807599. doi: 10.1002/adfm.201807599. - DOI
- Yuan J. Wang S. Ji Y. Chen R. Zhu Q. Wang Y. Zheng C. Tao Y. Fan Q. Huang W. Mater. Horiz. 2019;6:1259–1264. doi: 10.1039/C9MH00220K. - DOI
- Yang J. Chi Z. Zhu W. Tang B. Li Z. Sci. China: Chem. 2019;62:1090–1098. doi: 10.1007/s11426-019-9512-x. - DOI
- Fang M. Yang J. Li Z. Chin. J. Polym. Sci. 2019;37:383–393. doi: 10.1007/s10118-019-2218-z. - DOI
- Li Q. Li Z. Sci. China Mater. 2019 doi: 10.1007/s40843-019-1172-2. - DOI
- Chen X. Luo W. Ma H. Peng Q. Yuan W. Zhang Y. Sci. China: Chem. 2018;61:351–359. doi: 10.1007/s11426-017-9114-4. - DOI
-
- An Z. Zheng C. Tao Y. Chen R. Shi H. Chen T. Wang Z. Li H. Deng R. Liu X. Huang W. Nat. Mater. 2015;14:685–690. doi: 10.1038/nmat4259. - DOI - PubMed
- Gu L. Shi H. Bian L. Gu M. Ling K. Wang X. Ma H. Cai S. Ning W. Fu L. Wang H. Wang S. Gao Y. Yao W. Huo F. Tao Y. An Z. Liu X. Huang W. Nat. Photonics. 2019;13:373–375. doi: 10.1038/s41566-019-0447-x. - DOI
- Yang Z. Mao Z. Zhang X. Ou D. Mu Y. Zhang Y. Zhao C. Liu S. Chi Z. Xu J. Wu Y. Lu P. Lien A. Bryce M. R. Angew. Chem., Int. Ed. 2016;55:2181–2185. doi: 10.1002/anie.201509224. - DOI - PMC - PubMed
- Yang J. Zhen X. Wang B. Gao X. Ren Z. Wang J. Xie Y. Li J. Peng Q. Pu K. Li Z. Nat. Commun. 2018;9:840. doi: 10.1038/s41467-018-03236-6. - DOI - PMC - PubMed
- Yang J. Gao H. Wang Y. Yu Y. Gong Y. Fang M. Ding D. Hu W. Tang B. Z. Li Z. Mater. Chem. Front. 2019;3:1391–1397. doi: 10.1039/C9QM00108E. - DOI
- Wang X. Xiao H. Chen P. Yang Q. Chen B. Tung C. Chen Y. Wu L. J. Am. Chem. Soc. 2019;141:5045–5050. doi: 10.1021/jacs.9b00859. - DOI - PubMed
LinkOut - more resources
Full Text Sources