Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 25;11(3):851-855.
doi: 10.1039/c9sc04534a.

Catalytic asymmetric hydrogenation of (Z)-α-dehydroamido boronate esters: direct route to alkyl-substituted α-amidoboronic esters

Affiliations

Catalytic asymmetric hydrogenation of (Z)-α-dehydroamido boronate esters: direct route to alkyl-substituted α-amidoboronic esters

Yazhou Lou et al. Chem Sci. .

Abstract

The direct catalytic asymmetric hydrogenation of (Z)-α-dehydroamino boronate esters was realized. Using this approach, a class of therapeutically relevant alkyl-substituted α-amidoboronic esters was easily synthesized in high yields with generally excellent enantioselectivities (up to 99% yield and 99% ee). The utility of the products has been demonstrated by transformation to their corresponding boronic acid derivatives by a Pd-catalyzed borylation reaction and an efficient synthesis of a potential intermediate of bortezomib. The clean, atom-economic and environment friendly nature of this catalytic asymmetric hydrogenation process would make this approach a new alternative for the production of alkyl-substituted α-amidoboronic esters of great potential in the area of organic synthesis and medicinal chemistry.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Selected inhibitors containing chiral alkyl-substituted α-amidoboronic acids.
Scheme 1
Scheme 1. Approaches towards the synthesis of chiral alkyl-substituted α-aminoboronic esters.
Scheme 2
Scheme 2. Synthetic route to (Z)-α-dehydroamino boronates.
Scheme 3
Scheme 3. Scale-up synthesis and synthetic utility.

Similar articles

Cited by

References

    1. Kane R. C. Bross P. F. Farrell A. T. Pazdur R. Oncologist. 2003;8:508. doi: 10.1634/theoncologist.8-6-508. - DOI - PubMed
    2. Adams J. Kauffman M. Cancer Invest. 2004;22:304. doi: 10.1081/CNV-120030218. - DOI - PubMed
    3. Kane R. C. Dagher R. Farrell A. Ko C.-W. Sridhara R. Justice R. Pazdur R. Clin. Cancer Res. 2007;13:5291. doi: 10.1158/1078-0432.CCR-07-0871. - DOI - PubMed
    1. Selected reviews, see:

    2. Dick L. R. Fleming P. E. Drug Discovery Today. 2010;15:243. doi: 10.1016/j.drudis.2010.01.008. - DOI - PubMed
    3. Baker S. J. Tomsho J. W. Benkovic S. J. Chem. Soc. Rev. 2011;40:4279. doi: 10.1039/C0CS00131G. - DOI - PubMed
    4. Yang W. Gao X. Wang B. Med. Res. Rev. 2003;23:346. doi: 10.1002/med.10043. - DOI - PubMed
    1. Valery M. D. Abed Al Aziz Q. Morris S. Mini-Rev. Med. Chem. 2004;4:1001. doi: 10.2174/1389557043403125. - DOI - PubMed
    2. Matteson D. S. Med. Res. Rev. 2008;28:233. doi: 10.1002/med.20105. - DOI - PubMed
    3. Milo L. J. Lai J. H. Wu W. Liu Y. Maw H. Li Y. Jin Z. Shu Y. Poplawski S. E. Wu Y. Sanford D. G. Sudmeier J. L. Bachovchin W. W. J. Med. Chem. 2011;54:4365. doi: 10.1021/jm200460q. - DOI - PubMed
    4. Micale N. Scarbaci K. Troiano V. Ettari R. Grasso S. Zappalá M. Med. Res. Rev. 2014;34:1001. doi: 10.1002/med.21312. - DOI - PubMed
    1. Selected reviews and examples, see:

    2. Baker S. J. Ding C. Z. Akama T. Zhang Y.-K. Hernandez V. Xia Y. Future Med. Chem. 2009;1:1275. doi: 10.4155/fmc.09.71. - DOI - PubMed
    3. Han L. Wen Y. Li R. Xu B. Ge Z. Wang X. Cheng T. Cui J. Li R. Bioorg. Med. Chem. 2017;25:4031. doi: 10.1016/j.bmc.2017.05.049. - DOI - PubMed
    4. Markus K., Oliver H., Philipp H. and Michaul B., PCT Int. Appl., WO 2016050359 A1, 2016
    5. Dorsey B. D. Iqbal M. Chatterjee S. Menta E. Bernardini R. Bernareggi A. Cassarà P. G. Arasmo G. D. Ferretti E. Munari S. D. Oliva A. Pezzoni G. Allievi C. Strepponi I. Ruggeri B. Ator M. A. Williams M. Mallamo J. P. J. Med. Chem. 2008;51:1068. doi: 10.1021/jm7010589. - DOI - PubMed
    6. Teicher B. A. Tomaszewski J. E. Biochem. Pharmacol. 2015;96:1. doi: 10.1016/j.bcp.2015.04.008. - DOI - PubMed
    7. Rentsch A. Landsberg D. Brodmann T. Bülow L. Girbig A. Kalesse M. Angew. Chem., Int. Ed. 2013;52:5450. doi: 10.1002/anie.201207900. - DOI - PubMed
    8. Chauhan D. Tian Z. Zhou B. Kuhn D. Orlowski R. Raje N. Richardson P. Anderson K. C. Clin. Cancer Res. 2011;17:5311. doi: 10.1158/1078-0432.CCR-11-0476. - DOI - PMC - PubMed
    1. Awano T. Ohmura T. Suginome M. J. Am. Chem. Soc. 2011;133:20738. doi: 10.1021/ja210025q. - DOI - PubMed
    2. Ohmura T. Awano T. Suginome M. J. Am. Chem. Soc. 2010;132:13191. doi: 10.1021/ja106632j. - DOI - PubMed
    3. Ohmura T. Awano T. Suginome M. Chem. Lett. 2009;38:664. doi: 10.1246/cl.2009.664. - DOI
    4. Ohmura T. Miwa K. Awano T. Suginome M. Chem.—Asian J. 2018;13:2414. doi: 10.1002/asia.201800536. - DOI - PubMed