Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 7;11(30):7921-7926.
doi: 10.1039/d0sc02559c.

Reductive radical-initiated 1,2-C migration assisted by an azidyl group

Affiliations

Reductive radical-initiated 1,2-C migration assisted by an azidyl group

Xueying Zhang et al. Chem Sci. .

Abstract

We report here a novel reductive radical-polar crossover reaction that is a reductive radical-initiated 1,2-C migration of 2-azido allyl alcohols enabled by an azidyl group. The reaction tolerates diverse migrating groups, such as alkyl, alkenyl, and aryl groups, allowing access to n+1 ring expansion of small to large rings. The possibility of directly using propargyl alcohols in one-pot is also described. Mechanistic studies indicated that an azidyl group is a good leaving group and provides a driving force for the 1,2-C migration.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. (A) Reductive radical-polar crossover reactions; (B) this work: reductive radical-initiated 1,2-C migration assisted by an azidyl group.
Scheme 1
Scheme 1. Mechanistic investigations.
Fig. 2
Fig. 2. Proposed mechanism.

Similar articles

References

    1. Tsunoi S. Ryu I. Yamasaki S. Tanaka M. Sonoda N. Komatsu M. Chem. Commun. 1997:1889–1890. doi: 10.1039/A704934J. - DOI
    1. Radicals in organic synthesis, ed. P. Renaud and M. P. Sibi, Wiley-VCH Verlag GmbH, Weinheim, 2001
    2. Pitzer L. Schwarz J. L. Glorius F. Chem. Sci. 2019;10:8285–8291. doi: 10.1039/C9SC03359A. - DOI - PMC - PubMed
    1. Denes F. Chemla F. Normant J. F. Angew. Chem., Int. Ed. 2003;42:4043–4046. doi: 10.1002/anie.200250474. - DOI - PubMed
    2. Denes F. Cutri S. Perez-Luna A. Chemla F. Chem.–Eur. J. 2006;12:6506–6513. doi: 10.1002/chem.200600334. - DOI - PubMed
    3. Perez-Luna A. Botuha C. Ferreira F. Chemla F. Chem.–Eur. J. 2008;14:8784–8788. doi: 10.1002/chem.200801451. - DOI - PubMed
    1. Miyake Y. Nakajima K. Nishibayashi Y. J. Am. Chem. Soc. 2012;134:3338–3341. doi: 10.1021/ja211770y. - DOI - PubMed
    2. Kohls P. Jadhav D. Pandey G. Reiser O. Org. Lett. 2012;14:672–675. doi: 10.1021/ol202857t. - DOI - PubMed
    3. Yasu Y. Koike T. Akita M. Adv. Synth. Catal. 2012;354:3414–3420. doi: 10.1002/adsc.201200588. - DOI
    4. Chu L. Ohta C. Zuo Z. MacMillan D. W. C. J. Am. Chem. Soc. 2014;136:10886–10889. doi: 10.1021/ja505964r. - DOI - PMC - PubMed
    5. El Marrouni A. Ritts C. B. Balsells J. Chem. Sci. 2018;9:6639–6646. doi: 10.1039/C8SC02253D. - DOI - PMC - PubMed
    1. Yatham V. R. Shen Y. Martin R. Angew. Chem., Int. Ed. 2017;56:10915–10919. doi: 10.1002/anie.201706263. - DOI - PubMed
    2. Schwarz J. L. Schäfers F. Tlahuext-Aca A. Lückemeier L. Glorius F. J. Am. Chem. Soc. 2018;140:12705–12709. doi: 10.1021/jacs.8b08052. - DOI - PubMed
    3. Hu A. Chen Y. Guo J. Yu N. An Q. Zuo Z. J. Am. Chem. Soc. 2018;140:13580–13585. doi: 10.1021/jacs.8b08781. - DOI - PubMed
    4. Liao L. Cao G. Ye J. Sun G. Zhou W. Gui Y. Yan S. Shen G. Yu D. J. Am. Chem. Soc. 2018;140:17338–17342. doi: 10.1021/jacs.8b08792. - DOI - PubMed
    5. Ju T. Fu Q. Ye J. Zhang Z. Liao L. Yan S. Tian X. Luo S. Li J. Yu D. Angew. Chem., Int. Ed. 2018;57:13897–13901. doi: 10.1002/anie.201806874. - DOI - PubMed
    6. Fu Q. Bo Z. Ye J. Ju T. Huang H. Liao L. Yu D. Nat. Commun. 2019;10:3592–3600. doi: 10.1038/s41467-019-11528-8. - DOI - PMC - PubMed
    7. Mitsunuma H. Tanabe S. Fuse H. Ohkubo K. Kanai M. Chem. Sci. 2019;10:3459–3465. doi: 10.1039/C8SC05677C. - DOI - PMC - PubMed
    8. Donabauer K. Maity M. Berger A. L. Huff G. S. Crespi S. König B. Chem. Sci. 2019;10:5162–5166. doi: 10.1039/C9SC01356C. - DOI - PMC - PubMed
    9. Meng Q. Schirmer T. E. Berger A. L. Donabauer K. König B. J. Am. Chem. Soc. 2019;141:11393–11397. doi: 10.1021/jacs.9b05360. - DOI - PMC - PubMed
    10. Ni S. Padial N. M. Kingston C. Vantourout J. C. Schmitt D. C. Edwards J. T. Kruszyk M. M. Merchant R. R. Mykhailiuk P. K. Sanchez B. B. Yang S. Perry M. A. Gallego G. M. Mousseau J. J. Collins M. R. Cherney R. J. Lebed P. S. Chen J. S. Qin T. Baran P. S. J. Am. Chem. Soc. 2019;141:6726–6739. doi: 10.1021/jacs.9b02238. - DOI - PMC - PubMed