Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 6;11(33):8961-8965.
doi: 10.1039/d0sc03759a.

Asymmetric synthesis of γ-chiral borylalkanes via sequential reduction/hydroboration using a single copper catalyst

Affiliations

Asymmetric synthesis of γ-chiral borylalkanes via sequential reduction/hydroboration using a single copper catalyst

Jung Tae Han et al. Chem Sci. .

Abstract

The synthesis of γ-chiral borylalkanes through copper-catalyzed enantioselective SN2'-reduction of γ,γ-disubstituted allylic substrates and subsequent hydroboration was reported. A copper-DTBM-Segphos catalyst produced a range of γ-chiral alkylboronates from easily accessible allylic acetate or benzoate with high enantioselectivities up to 99% ee. Furthermore, selective organic transformations of the resulting γ-chiral alkylboronates generated the corresponding γ-chiral alcohol, arene and amine compounds.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Representative functionalized γ-chiral compounds.
Scheme 1
Scheme 1. Approaches to γ-chiral organoboron compounds.
Fig. 2
Fig. 2. Structures of the chiral ligands.
Scheme 2
Scheme 2. Mechanistic studies.
Fig. 3
Fig. 3. Proposed mechanism of copper-catalyzed reductive hydroboration.
Scheme 3
Scheme 3. Application of γ-chiral alkylboron compounds.

Similar articles

Cited by

References

    1. Werner E. W. Mei T.-S. Burckle A. J. Sigman M. S. Science. 2012;338:1455. doi: 10.1126/science.1229208. - DOI - PMC - PubMed
    2. Mei T.-S. Patel H. H. Sigman M. S. Nature. 2014;508:340. doi: 10.1038/nature13231. - DOI - PMC - PubMed
    3. Liu W.-B. Okamoto N. Alexy E. J. Hong A. Y. Tran K. Stoltz B. M. J. Am. Chem. Soc. 2016;138:5234. doi: 10.1021/jacs.6b02153. - DOI - PMC - PubMed
    4. Wang Z.-X. Bai X.-Y. Yao H.-C. Li B.-J. J. Am. Chem. Soc. 2016;138:14872. doi: 10.1021/jacs.6b10415. - DOI - PubMed
    5. Liu J. Yuan Q. Toste F. D. Sigman M. S. Nat. Chem. 2019;11:710. doi: 10.1038/s41557-019-0289-7. - DOI - PMC - PubMed
    1. Wright A. E. Pomponi S. A. McConnell O. J. Kohmoto S. McCarthy P. J. J. Nat. Prod. 1987;50:976. doi: 10.1021/np50053a042. - DOI - PubMed
    2. Rodriguez A. D. Ramirez C. J. Nat. Prod. 2001;64:100. doi: 10.1021/np000196g. - DOI - PubMed
    3. Hegde S. Schmidt M. Annu. Rep. Med. Chem. 2006;41:439.
    1. For reviews, see:

    2. Scott H. K. Aggarwal V. K. Chem.–Eur. J. 2011;17:13124. doi: 10.1002/chem.201102581. - DOI - PubMed
    3. Sandford C. Aggarwal V. K. Chem. Commun. 2017;53:5481. doi: 10.1039/C7CC01254C. - DOI - PubMed
    1. Matteson D. S. Chem. Rev. 1989;89:1535. doi: 10.1021/cr00097a009. - DOI
    2. Matteson D. S., Stereodirected Synthesis with Organoboranes, Springer, New York, 1995
    3. Matteson D. S. J. Org. Chem. 2013;78:10009. doi: 10.1021/jo4013942. - DOI - PubMed
    1. Ito H. Ito S. Sasaki Y. Matsuura K. Sawamura M. J. Am. Chem. Soc. 2007;129:14856. doi: 10.1021/ja076634o. - DOI - PubMed
    2. Ito H. Kosaka Y. Nonoyama K. Sasaki Y. Sawamura M. Angew. Chem., Int. Ed. 2008;47:7424. doi: 10.1002/anie.200802342. - DOI - PubMed
    3. Lee Y. Hoveyda A. H. J. Am. Chem. Soc. 2009;131:3160. doi: 10.1021/ja809382c. - DOI - PMC - PubMed
    4. Matsuda N. Hirano K. Satoh T. Miura M. J. Am. Chem. Soc. 2013;135:4934. doi: 10.1021/ja4007645. - DOI - PubMed
    5. Meng F. McGrath K. P. Hoveyda A. H. Nature. 2014;513:367. doi: 10.1038/nature13735. - DOI - PMC - PubMed
    6. Kubota K. Yamamoto E. Ito H. J. Am. Chem. Soc. 2015;137:420. doi: 10.1021/ja511247z. - DOI - PubMed
    7. Jia T. Cao P. Wang B. Lou Y. Yin X. Wang M. Liao J. J. Am. Chem. Soc. 2015;137:13760. doi: 10.1021/jacs.5b09146. - DOI - PubMed
    8. Nishikawa D. Hirano K. Miura M. J. Am. Chem. Soc. 2015;137:15620. doi: 10.1021/jacs.5b09773. - DOI - PubMed
    9. Meng F. Li X. Torker S. Shi Y. Shen X. Hoveyda A. H. Nature. 2016;537:387. doi: 10.1038/nature19063. - DOI - PMC - PubMed
    10. Yeung K. Ruscoe R. E. Rae J. Pulis A. P. Procter D. J. Angew. Chem., Int. Ed. 2016;55:11912. doi: 10.1002/anie.201606710. - DOI - PMC - PubMed
    11. Jang H. Romiti F. Torker S. Hoveyda A. H. Nat. Chem. 2017;9:1269. doi: 10.1038/nchem.2816. - DOI - PMC - PubMed
    12. Logan K. M. Brown M. K. Angew. Chem., Int. Ed. 2017;56:851. doi: 10.1002/anie.201609844. - DOI - PMC - PubMed
    13. Huang Y. Smith K. B. Brown M. K. Angew. Chem., Int. Ed. 2017;56:13314. doi: 10.1002/anie.201707323. - DOI - PMC - PubMed
    14. Lee J. Radomkit S. Torker S. del Pozo J. Hoveyda A. H. Nat. Chem. 2018;10:99. doi: 10.1038/nchem.2861. - DOI - PMC - PubMed
    15. Itoh T. Kanzaki Y. Shimizu Y. Kanai M. Angew. Chem., Int. Ed. 2018;57:8265. doi: 10.1002/anie.201804117. - DOI - PubMed