Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2021 Jun 14;25(1):211.
doi: 10.1186/s13054-021-03634-1.

Extracorporeal membrane oxygenation for COVID-19: a systematic review and meta-analysis

Affiliations
Meta-Analysis

Extracorporeal membrane oxygenation for COVID-19: a systematic review and meta-analysis

Kollengode Ramanathan et al. Crit Care. .

Erratum in

Abstract

Background: There are several reports of extracorporeal membrane oxygenation (ECMO) use in patients with coronavirus disease 2019 (COVID-19) who develop severe acute respiratory distress syndrome (ARDS). We conducted a systematic review and meta-analysis to guide clinical decision-making and future research.

Methods: We searched MEDLINE, Embase, Cochrane and Scopus databases from 1 December 2019 to 10 January 2021 for observational studies or randomised clinical trials examining ECMO in adults with COVID-19 ARDS. We performed random-effects meta-analyses and meta-regression, assessed risk of bias using the Joanna Briggs Institute checklist and rated the certainty of evidence using the GRADE approach. Survival outcomes were presented as pooled proportions while continuous outcomes were presented as pooled means, both with corresponding 95% confidence intervals [CIs]. The primary outcome was in-hospital mortality. Secondary outcomes were duration of ECMO therapy and mechanical ventilation, weaning rate from ECMO and complications during ECMO.

Results: We included twenty-two observational studies with 1896 patients in the meta-analysis. Venovenous ECMO was the predominant mode used (98.6%). The pooled in-hospital mortality in COVID-19 patients (22 studies, 1896 patients) supported with ECMO was 37.1% (95% CI 32.3-42.0%, high certainty). Pooled mortality in the venovenous ECMO group was 35.7% (95% CI 30.7-40.7%, high certainty). Meta-regression found that age and ECMO duration were associated with increased mortality. Duration of ECMO support (18 studies, 1844 patients) was 15.1 days (95% CI 13.4-18.7). Weaning from ECMO (17 studies, 1412 patients) was accomplished in 67.6% (95% CI 50.5-82.7%) of patients. There were a total of 1583 ECMO complications reported (18 studies, 1721 patients) and renal complications were the most common.

Conclusion: The majority of patients received venovenous ECMO support for COVID-19-related ARDS. In-hospital mortality in patients receiving ECMO support for COVID-19 was 37.1% during the first year of the pandemic, similar to those with non-COVID-19-related ARDS. Increasing age was a risk factor for death. Venovenous ECMO appears to be an effective intervention in selected patients with COVID-19-related ARDS. PROSPERO CRD42020192627.

Keywords: Acute respiratory distress syndrome; COVID-19; Extracorporeal membrane oxygenation; SARS-CoV-2.

PubMed Disclaimer

Conflict of interest statement

DB receives research support from ALung Technologies. He has been on the medical advisory boards for Baxter, Abiomed, Xenios and Hemovent, and is the President-elect of ELSO. RPB receives research support unrelated to this project from National Institutes of Health’s National Heart, Lung and Blood Institute K12 HL138039 and R01 HL153519 and the National Institute of Child Health and Human Development R01 HD015434. He is the ELSO Registry Chair. EF reports personal fees from ALung Technologies, Baxter, Fresenius Medical Care, Getinge and MC3 Cardiopulmonary outside the submitted work.

Figures

Fig. 1
Fig. 1
Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow chart
Fig. 2
Fig. 2
Proportion of non-survivors among coronavirus disease 2019 patients requiring extracorporeal membrane oxygenation support
Fig. 3
Fig. 3
Funnel plot for primary meta-analysis

Comment in

References

    1. Australia, New Zealand Extracorporeal Membrane Oxygenation Influenza I, Davies A, Jones D, Bailey M, Beca J, Bellomo R, Blackwell N, Forrest P, Gattas D et al: Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) acute respiratory distress syndrome. JAMA 2009, 302(17):1888–95. - PubMed
    1. Sukhal S, Sethi J, Ganesh M, Villablanca PA, Malhotra AK, Ramakrishna H. Extracorporeal membrane oxygenation in severe influenza infection with respiratory failure: a systematic review and meta-analysis. Ann Card Anaesth. 2017;20(1):14–21. doi: 10.4103/0971-9784.197820. - DOI - PMC - PubMed
    1. Alshahrani MS, Sindi A, Alshamsi F, Al-Omari A, El Tahan M, Alahmadi B, Zein A, Khatani N, Al-Hameed F, Alamri S, et al. Extracorporeal membrane oxygenation for severe Middle East respiratory syndrome coronavirus. Ann Intensive Care. 2018;8(1):3. doi: 10.1186/s13613-017-0350-x. - DOI - PMC - PubMed
    1. Cho HJ, Heinsar S, Jeong IS, Shekar K, Li Bassi G, Jung JS, Suen JY, Fraser JF. ECMO use in COVID-19: lessons from past respiratory virus outbreaks—a narrative review. Crit Care. 2020;24(1):301. doi: 10.1186/s13054-020-02979-3. - DOI - PMC - PubMed
    1. Barbaro RP, MacLaren G, Boonstra PS, Iwashyna TJ, Slutsky AS, Fan E, Bartlett RH, Tonna JE, Hyslop R, Fanning JJ, et al. Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the Extracorporeal Life Support Organization registry. Lancet. 2020;396(10257):1071–1078. doi: 10.1016/S0140-6736(20)32008-0. - DOI - PMC - PubMed