Genetic architecture of 11 organ traits derived from abdominal MRI using deep learning
- PMID: 34128465
- PMCID: PMC8205492
- DOI: 10.7554/eLife.65554
Genetic architecture of 11 organ traits derived from abdominal MRI using deep learning
Abstract
Cardiometabolic diseases are an increasing global health burden. While socioeconomic, environmental, behavioural, and genetic risk factors have been identified, a better understanding of the underlying mechanisms is required to develop more effective interventions. Magnetic resonance imaging (MRI) has been used to assess organ health, but biobank-scale studies are still in their infancy. Using over 38,000 abdominal MRI scans in the UK Biobank, we used deep learning to quantify volume, fat, and iron in seven organs and tissues, and demonstrate that imaging-derived phenotypes reflect health status. We show that these traits have a substantial heritable component (8-44%) and identify 93 independent genome-wide significant associations, including four associations with liver traits that have not previously been reported. Our work demonstrates the tractability of deep learning to systematically quantify health parameters from high-throughput MRI across a range of organs and tissues, and use the largest-ever study of its kind to generate new insights into the genetic architecture of these traits.
Keywords: adiposity; genetics; genome-wide association study; genomics; human; magnetic resonance imaging; medicine.
© 2021, Liu et al.
Conflict of interest statement
YL, Nv, MC Employee, Calico Life Sciences LLC. This work was funded by Calico Life Sciences LLC. NB, BW, JB, ET No competing interests declared, ES Employee, Calico Life Sciences LLC.This work was funded by Calico Life Sciences LLC.
Figures
















Similar articles
-
The link between liver fat and cardiometabolic diseases is highlighted by genome-wide association study of MRI-derived measures of body composition.Commun Biol. 2022 Nov 19;5(1):1271. doi: 10.1038/s42003-022-04237-4. Commun Biol. 2022. PMID: 36402844 Free PMC article.
-
Free-breathing 3-D quantification of infant body composition and hepatic fat using a stack-of-radial magnetic resonance imaging technique.Pediatr Radiol. 2019 Jun;49(7):876-888. doi: 10.1007/s00247-019-04384-7. Epub 2019 Apr 17. Pediatr Radiol. 2019. PMID: 31001664
-
Better Together: Data Harmonization and Cross-Study Analysis of Abdominal MRI Data From UK Biobank and the German National Cohort.Invest Radiol. 2023 May 1;58(5):346-354. doi: 10.1097/RLI.0000000000000941. Epub 2022 Dec 16. Invest Radiol. 2023. PMID: 36729536 Free PMC article.
-
Visceral adiposity and inflammatory bowel disease.Int J Colorectal Dis. 2021 Nov;36(11):2305-2319. doi: 10.1007/s00384-021-03968-w. Epub 2021 Jun 9. Int J Colorectal Dis. 2021. PMID: 34104989 Review.
-
Body Composition Analysis of Computed Tomography Scans in Clinical Populations: The Role of Deep Learning.Lifestyle Genom. 2020;13(1):28-31. doi: 10.1159/000503996. Epub 2019 Dec 10. Lifestyle Genom. 2020. PMID: 31822001 Review.
Cited by
-
Abdominal imaging associates body composition with COVID-19 severity.PLoS One. 2023 Apr 13;18(4):e0283506. doi: 10.1371/journal.pone.0283506. eCollection 2023. PLoS One. 2023. PMID: 37053189 Free PMC article.
-
PennPRS: a centralized cloud computing platform for efficient polygenic risk score training in precision medicine.medRxiv [Preprint]. 2025 Feb 10:2025.02.07.25321875. doi: 10.1101/2025.02.07.25321875. medRxiv. 2025. PMID: 39990574 Free PMC article. Preprint.
-
Circulating pancreatic enzyme levels are a causal biomarker of type 1 diabetes.medRxiv [Preprint]. 2024 Aug 9:2024.08.08.24311619. doi: 10.1101/2024.08.08.24311619. medRxiv. 2024. PMID: 39148858 Free PMC article. Preprint.
-
Donor and Recipient Polygenic Risk Scores Influence Kidney Transplant Function.Transpl Int. 2025 Mar 4;38:14171. doi: 10.3389/ti.2025.14171. eCollection 2025. Transpl Int. 2025. PMID: 40104404 Free PMC article.
-
Spleen volume in relation to ulcerative colitis and Crohn's disease: a Mendelian randomization study.Sci Rep. 2025 Feb 24;15(1):6588. doi: 10.1038/s41598-025-90104-1. Sci Rep. 2025. PMID: 39994250 Free PMC article.
References
-
- Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, Peltonen L, Dermitzakis E, Bonnen PE, Altshuler DM, Gibbs RA, de Bakker PI, Deloukas P, Gabriel SB, Gwilliam R, Hunt S, Inouye M, Jia X, Palotie A, Parkin M, Whittaker P, Yu F, Chang K, Hawes A, Lewis LR, Ren Y, Wheeler D, Gibbs RA, Muzny DM, Barnes C, Darvishi K, Hurles M, Korn JM, Kristiansson K, Lee C, McCarrol SA, Nemesh J, Dermitzakis E, Keinan A, Montgomery SB, Pollack S, Price AL, Soranzo N, Bonnen PE, Gibbs RA, Gonzaga-Jauregui C, Keinan A, Price AL, Yu F, Anttila V, Brodeur W, Daly MJ, Leslie S, McVean G, Moutsianas L, Nguyen H, Schaffner SF, Zhang Q, Ghori MJ, McGinnis R, McLaren W, Pollack S, Price AL, Schaffner SF, Takeuchi F, Grossman SR, Shlyakhter I, Hostetter EB, Sabeti PC, Adebamowo CA, Foster MW, Gordon DR, Licinio J, Manca MC, Marshall PA, Matsuda I, Ngare D, Wang VO, Reddy D, Rotimi CN, Royal CD, Sharp RR, Zeng C, Brooks LD, McEwen JE, International HapMap 3 Consortium Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467:52–58. doi: 10.1038/nature09298. - DOI - PMC - PubMed
-
- Basty N, Liu Y, Cule M, Thomas EL, Bell JD, Whitcher B. Automated measurement of pancreatic fat and iron concentration using Multi-Echo and T1-Weighted MRI data. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI); 2020. pp. 345–348. - DOI
-
- Buch S, Stickel F, Trépo E, Way M, Herrmann A, Nischalke HD, Brosch M, Rosendahl J, Berg T, Ridinger M, Rietschel M, McQuillin A, Frank J, Kiefer F, Schreiber S, Lieb W, Soyka M, Semmo N, Aigner E, Datz C, Schmelz R, Brückner S, Zeissig S, Stephan AM, Wodarz N, Devière J, Clumeck N, Sarrazin C, Lammert F, Gustot T, Deltenre P, Völzke H, Lerch MM, Mayerle J, Eyer F, Schafmayer C, Cichon S, Nöthen MM, Nothnagel M, Ellinghaus D, Huse K, Franke A, Zopf S, Hellerbrand C, Moreno C, Franchimont D, Morgan MY, Hampe J. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nature Genetics. 2015;47:1443–1448. doi: 10.1038/ng.3417. - DOI - PubMed
-
- Bugianesi E, Bizzarri C, Rosso C, Mosca A, Panera N, Veraldi S, Dotta A, Giannone G, Raponi M, Cappa M, Alisi A, Nobili V. Low birthweight increases the likelihood of severe steatosis in pediatric Non-Alcoholic fatty liver disease. American Journal of Gastroenterology. 2017;112:1277–1286. doi: 10.1038/ajg.2017.140. - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical