Probenecid increases renal retention and antitumor activity of DFMO in neuroblastoma
- PMID: 34129075
- DOI: 10.1007/s00280-021-04309-y
Probenecid increases renal retention and antitumor activity of DFMO in neuroblastoma
Abstract
Background: Neuroblastoma (NB) is the most common extracranial solid tumor in children. Interference with the polyamine biosynthesis pathway by inhibition of MYCN-activated ornithine decarboxylase (ODC) is a validated approach. The ODC inhibitor α-difluoromethylornithine (DFMO, or Eflornithine) has been FDA-approved for the treatment of trypanosomiasis and hirsutism and has advanced to clinical cancer trials including NB as well as cancer-unrelated human diseases. One key challenge of DFMO is its rapid renal clearance and the need for high and frequent drug dosing during treatment.
Methods: We performed in vivo pharmacokinetic (PK), antitumorigenic, and molecular studies with DFMO/probenecid using NB patient-derived xenografts (PDX) in mice. We used LC-MS/MS, HPLC, and immunoblotting to analyze blood, brain tissue, and PDX tumor tissue samples collected from mice.
Results: The organic anion transport 1/3 (OAT 1/3) inhibitor probenecid reduces the renal clearance of DFMO and significantly increases the antitumor activity of DFMO in PDX of NB (P < 0.02). Excised tumors revealed that DFMO/probenecid treatment decreases polyamines putrescine and spermidine, reduces MYCN protein levels and dephosphorylates retinoblastoma (Rb) protein (p-RbSer795), suggesting DFMO/probenecid-induced cell cycle arrest.
Conclusion: Addition of probenecid as an adjuvant to DFMO therapy may be suitable to decrease overall dose and improve drug efficacy in vivo.
Keywords: DFMO/Eflornithine; Pediatric cancer; Pharmacokinetics; Probenecid; Renal drug clearance; Repurposing drugs.
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Similar articles
-
A Phase I Trial of DFMO Targeting Polyamine Addiction in Patients with Relapsed/Refractory Neuroblastoma.PLoS One. 2015 May 27;10(5):e0127246. doi: 10.1371/journal.pone.0127246. eCollection 2015. PLoS One. 2015. PMID: 26018967 Free PMC article. Clinical Trial.
-
AMXT-1501, a novel polyamine transport inhibitor, synergizes with DFMO in inhibiting neuroblastoma cell proliferation by targeting both ornithine decarboxylase and polyamine transport.Int J Cancer. 2013 Sep 15;133(6):1323-33. doi: 10.1002/ijc.28139. Epub 2013 May 30. Int J Cancer. 2013. PMID: 23457004
-
Ornithine decarboxylase inhibition by alpha-difluoromethylornithine activates opposing signaling pathways via phosphorylation of both Akt/protein kinase B and p27Kip1 in neuroblastoma.Cancer Res. 2008 Dec 1;68(23):9825-31. doi: 10.1158/0008-5472.CAN-08-1865. Cancer Res. 2008. PMID: 19047162 Free PMC article.
-
Translational development of difluoromethylornithine (DFMO) for the treatment of neuroblastoma.Transl Pediatr. 2015 Jul;4(3):226-38. doi: 10.3978/j.issn.2224-4336.2015.04.06. Transl Pediatr. 2015. PMID: 26835380 Free PMC article. Review.
-
Alpha-Difluoromethylornithine, an Irreversible Inhibitor of Polyamine Biosynthesis, as a Therapeutic Strategy against Hyperproliferative and Infectious Diseases.Med Sci (Basel). 2018 Feb 8;6(1):12. doi: 10.3390/medsci6010012. Med Sci (Basel). 2018. PMID: 29419804 Free PMC article. Review.
Cited by
-
Polyamines: their significance for maintaining health and contributing to diseases.Cell Commun Signal. 2023 Dec 4;21(1):348. doi: 10.1186/s12964-023-01373-0. Cell Commun Signal. 2023. PMID: 38049863 Free PMC article. Review.
-
In Vivo Antitumor Activity of Allicin in a Pediatric Neuroblastoma Patient-derived Xenograft (PDX) Mouse Model.In Vivo. 2025 May-Jun;39(3):1283-1292. doi: 10.21873/invivo.13932. In Vivo. 2025. PMID: 40295032 Free PMC article.
-
MYCN in Neuroblastoma: "Old Wine into New Wineskins".Diseases. 2021 Oct 29;9(4):78. doi: 10.3390/diseases9040078. Diseases. 2021. PMID: 34842635 Free PMC article. Review.
-
DMSO-tolerant ornithine decarboxylase (ODC) tandem assay optimised for high-throughput screening.J Enzyme Inhib Med Chem. 2023 Dec;38(1):309-318. doi: 10.1080/14756366.2022.2150186. J Enzyme Inhib Med Chem. 2023. PMID: 36451618 Free PMC article.
-
Current status, hotspots and frontiers of ion channel-related research in glioblastoma: a bibliometric analysis from 2005 to 2024.Front Oncol. 2025 Jun 4;15:1588598. doi: 10.3389/fonc.2025.1588598. eCollection 2025. Front Oncol. 2025. PMID: 40535121 Free PMC article. Review.
References
-
- Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369(9579):2106–2120 - DOI
-
- Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, Carter SL, Cibulskis K, Hanna M, Kiezun A, Kim J, Lawrence MS, Lichenstein L, McKenna A, Pedamallu CS, Ramos AH, Shefler E, Sivachenko A, Sougnez C, Stewart C, Ally A, Birol I, Chiu R, Corbett RD, Hirst M, Jackman SD, Kamoh B, Khodabakshi AH, Krzywinski M, Lo A, Moore RA, Mungall KL, Qian J, Tam A, Thiessen N, Zhao Y, Cole KA, Diamond M, Diskin SJ, Mosse YP, Wood AC, Ji L, Sposto R, Badgett T, London WB, Moyer Y, Gastier-Foster JM, Smith MA, Guidry Auvil JM, Gerhard DS, Hogarty MD, Jones SJ, Lander ES, Gabriel SB, Getz G, Seeger RC, Khan J, Marra MA, Meyerson M, Maris JM (2013) The genetic landscape of high-risk neuroblastoma. Nat Genet 45(3):279–284. https://doi.org/10.1038/ng.2529 - DOI - PubMed - PMC
-
- Maris JM (2010) Recent advances in neuroblastoma. N Engl J Med 362(23):2202–2211. https://doi.org/10.1056/NEJMra0804577 - DOI - PubMed - PMC
-
- Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, Weiss WA (2016) Neuroblastoma. Nat Rev Dis Primers 2:16078. https://doi.org/10.1038/nrdp.2016.78 - DOI - PubMed
-
- Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3(3):203–216 - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials