Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Aug;132(8):1830-1844.
doi: 10.1016/j.clinph.2021.03.053. Epub 2021 May 13.

Demystifying the spontaneous phenomena of motor hyperexcitability

Affiliations
Free article
Review

Demystifying the spontaneous phenomena of motor hyperexcitability

J Bashford et al. Clin Neurophysiol. 2021 Aug.
Free article

Abstract

Possessing a discrete functional repertoire, the anterior horn cell can be in one of two electrophysiological states: on or off. Usually under tight regulatory control by the central nervous system, a hierarchical network of these specialist neurons ensures muscular strength is coordinated, gradated and adaptable. However, spontaneous activation of these cells and their axons can result in abnormal muscular twitching. The muscular twitch is the common building block of several distinct clinical patterns, namely fasciculation, myokymia and neuromyotonia. When attempting to distinguish these entities electromyographically, their unique temporal and morphological profiles must be appreciated. Detection and quantification of burst duration, firing frequency, multiplet patterns and amplitude are informative. A common feature is their persistence during sleep. In this review, we explain the accepted terminology used to describe the spontaneous phenomena of motor hyperexcitability, highlighting potential pitfalls amidst a bemusing and complex collection of overlapping terms. We outline the relevance of these findings within the context of disease, principally amyotrophic lateral sclerosis, Isaacs syndrome and Morvan syndrome. In addition, we highlight the use of high-density surface electromyography, suggesting that more widespread use of this non-invasive technique is likely to provide an enhanced understanding of these motor hyperexcitability syndromes.

Keywords: ALS; Fasciculation; Isaacs syndrome; Morvan syndrome; Myokymia; Neuromyotonia; Neuronal hyperexcitability; Surface EMG.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

MeSH terms

LinkOut - more resources