Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2021 Jun 15;21(1):181.
doi: 10.1186/s12866-021-02245-8.

Microbiome recovery in adult females with uncomplicated urinary tract infections in a randomised phase 2A trial of the novel antibiotic gepotidacin (GSK140944)

Affiliations
Clinical Trial

Microbiome recovery in adult females with uncomplicated urinary tract infections in a randomised phase 2A trial of the novel antibiotic gepotidacin (GSK140944)

Andrea Nuzzo et al. BMC Microbiol. .

Erratum in

Abstract

Background: With increasing concerns about the impact of frequent antibiotic usage on the human microbiome, it is important to characterize the potential for such effects in early antibiotic drug development clinical trials. In a randomised Phase 2a clinical trial study that evaluated the pharmacokinetics of repeated oral doses of gepotidacin, a first-in-chemical-class triazaacenaphthylene antibiotic with a distinct mechanism of action, in adult females with uncomplicated urinary tract infections for gepotidacin (GSK2140944) we evaluated the potential changes in microbiome composition across multiple time points and body-sites ( ClinicalTrials.gov : NCT03568942).

Results: Samples of gastrointestinal tract (GIT), pharyngeal cavity and vaginal microbiota were collected with consent from 22 patients at three time points relative to the gepotidacin dosing regimen; Day 1 (pre-dose), Day 5 (end of dosing) and Follow-up (Day 28 ± 3 days). Microbiota composition was determined by DNA sequencing of 16S rRNA gene variable region 4 amplicons. By Day 5, significant changes were observed in the microbiome diversity relative to pre-dose across the tested body-sites. However, by the Follow-up visit, microbiome diversity changes were reverted to compositions comparable to Day 1. The greatest range of microbiome changes by body-site were GIT followed by the pharyngeal cavity then vagina. In Follow-up visit samples we found no statistically significant occurrences of pathogenic taxa.

Conclusion: Our findings suggest that gepotidacin alteration of the human microbiome after 5 days of dosing is temporary and rebound to pre-dosing states is evident within the first month post-treatment. We recommend that future antibiotic drug trials include similar exploratory investigations into the duration and context of microbiome modification and recovery.

Trial registration: NCT03568942 . Registered 26 June 2018.

Keywords: Antibiotic; Clinical trial; Gepotidacin; Microbiome; Urinary tract infection.

PubMed Disclaimer

Conflict of interest statement

A.N., S.V.H., C.T., C.R.P., and N.E.S-O., are employees of GlaxoSmithKline and hold restricted shares. E.F.D, D.F.G. and J.R.B. were employees and restricted shareholder when this work was completed.

Figures

Fig. 1
Fig. 1
Overview of microbiome dynamics during gepotidacin Phase 2a clinical trial. (A) Phylum level changes in the relative abundance of microbiota across different body sites and time points. (B) Changes in microbiota community as measured by different indices of alpha diversity. The initial, lower placed value in each comparison is from the overall ANOVA (* P value ≤0.05; ** P value ≤0.005, ns = nonsignificant)
Fig. 2
Fig. 2
Beta diversity index of microbial communities using unweighted UniFrac distances with PCoA (A) or NMDS (B) projections on different body sites over time. (C) Violin plots showing the distribution of the first CCA scores for each visit and body type (* P value ≤0.05; ** P value ≤0.005; *** P value ≤0.0001 ns = nonsignificant, Wilcoxon test with Benjamini-Hochberg FDR correction)
Fig. 3
Fig. 3
Changes in specific microbiota genera at Day 5 and Follow-up compared to Day 1 for the (A) gastro-intestinal tract (GIT); (B) pharyngeal cavity and (C) vagina. Size represents -log10 of FDR-adjusted P-value and lines represent CI at 95%
Fig. 4
Fig. 4
Overall trends in changes for specific pathogenic genera including Bacillus, Clostridioides, Escherichia-Shigella, Haemophilus, Neisseria, Staphylococcus and Streptococcus. (* P value ≤0.05; ** P value ≤0.005; *** P value ≤0.0001 ns = nonsignificant)
Fig. 5
Fig. 5
Species level changes in abundance for E. coli species using phylogenetic analyses of their 16S rRNA-V4 sequences and closely related sequences from the NCBI public database

References

    1. Bax BD, Chan PF, Eggleston DS, Fosberry A, Gentry DR, Gorrec F, Giordano I, Hann MM, Hennessy A, Hibbs M, Huang J, Jones E, Jones J, Brown KK, Lewis CJ, May EW, Saunders MR, Singh O, Spitzfaden CE, Shen C, Shillings A, Theobald AJ, Wohlkonig A, Pearson ND, Gwynn MN. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature. 2010;466(7309):935–940. doi: 10.1038/nature09197. - DOI - PubMed
    1. O’riordan W, Tiffany C, Scangarella-Oman N, Perry C, Hossain M, Ashton T, et al. Efficacy, safety, and tolerability of gepotidacin (GSK2140944) in the treatment of patients with suspected or confirmed gram-positive acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2017;61(6). 10.1128/AAC.02095-16. - PMC - PubMed
    1. Scangarella-Oman NE, Ingraham KA, Tiffany CA, Tomsho L, van Horn SF, Mayhew DN, et al. In vitro activity and microbiological efficacy of gepotidacin from a phase 2, randomized, multicenter, dose-ranging study in patients with acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2020;64. - PMC - PubMed
    1. Scangarella-Oman NE, Hossain M, Dixon PB, Ingraham K, Min S, Tiffany CA, et al. Microbiological analysis from a phase 2 randomized study in adults evaluating single oral doses of gepotidacin in the treatment of uncomplicated urogenital gonorrhea caused by neisseria gonorrhoeae. Antimicrob Agents Chemother. 2018;62(12). 10.1128/AAC.01221-18. - PMC - PubMed
    1. Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol. 2016;14(10):609–620. doi: 10.1038/nrmicro.2016.108. - DOI - PMC - PubMed

Publication types

MeSH terms

Associated data