Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1988 Sep;85(17):6252-6.
doi: 10.1073/pnas.85.17.6252.

Comparison between DNA melting thermodynamics and DNA polymerase fidelity

Affiliations
Comparative Study

Comparison between DNA melting thermodynamics and DNA polymerase fidelity

J Petruska et al. Proc Natl Acad Sci U S A. 1988 Sep.

Abstract

The relation between DNA polymerase fidelity and base pairing stability is investigated by using DNA primer-template duplexes that contain a common 9-base template sequence but have either correct (A.T) or incorrect (G.T, C.T, T.T) base pairs at the primer 3' terminus. Thermal melting and enzyme kinetic measurements are compared for each kind of terminus. Analysis of melting temperatures finds that differences between the free energy changes upon dissociation (delta delta Go) are only 0.2, 0.3, and 0.4 kcal.mol-1 (1 cal = 4.18 J) for terminal A.T compared to G.T, C.T, and T.T mispairs, respectively, at 37 degrees C. We show that enthalpy changes are directly correlated with entropy changes for normal and abnormal base pairs in DNA in aqueous solution and that delta delta Go values are small because of near cancellation of corresponding enthalpy and entropy components. The kinetics of elongating primer termini are measured with purified Drosophila DNA polymerase alpha. The matched A.T terminus is found to be extended approximately 200 times faster than a G.T mismatch and 1400 and 2500 times faster than C.T and T.T mismatches, respectively. Enzymatic discrimination against elongating mismatched termini is based mainly on Km rather than Vmax differences. From Km at 37 degrees C, we find delta delta Go values of 2.6-3.7 kcal.mol-1, about an order of magnitude greater than indicated by melting data. A similar measurement of nucleotide insertion kinetics has previously found rates of forming A.T base pairs to be 500 times greater than G.T mispairs and 20,000 times greater than C.T and T.T mispairs. Here also, Km differences are mainly responsible for discrimination and indicate even larger delta delta Go values (4.3-4.9 kcal.mol-1). Thus, free energy differences between correct and incorrect base pairs in the active site cleft of polymerase appear to be greater than 10 times as large as in aqueous medium. We explore the idea that a binding cleft that snugly fits correct base pairs and excludes water at the active site may amplify base-pair free energy differences by reducing entropy differences and increasing enthalpy differences sufficiently to account for nucleotide insertion and extension fidelity.

PubMed Disclaimer

References

    1. Biopolymers. 1970;9(10):1125-227 - PubMed
    1. Gene. 1980 Oct;11(1-2):129-48 - PubMed
    1. Annu Rev Biochem. 1982;51:429-57 - PubMed
    1. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2221-5 - PubMed
    1. Nucleic Acids Res. 1985 Jul 11;13(13):4811-24 - PubMed

Publication types

LinkOut - more resources