Protective role of the mitochondrial fusion protein OPA1 in hypertension
- PMID: 34133045
- DOI: 10.1096/fj.202000238RRR
Protective role of the mitochondrial fusion protein OPA1 in hypertension
Abstract
Hypertension is associated with excessive reactive oxygen species (ROS) production in vascular cells. Mitochondria undergo fusion and fission, a process playing a role in mitochondrial function. OPA1 is essential for mitochondrial fusion. Loss of OPA1 is associated with ROS production and cell dysfunction. We hypothesized that mitochondria fusion could reduce oxidative stress that defect in fusion would exacerbate hypertension. Using (a) Opa1 haploinsufficiency in isolated resistance arteries from Opa1+/- mice, (b) primary vascular cells from Opa1+/- mice, and (c) RNA interference experiments with siRNA against Opa1 in vascular cells, we investigated the role of mitochondria fusion in hypertension. In hypertension, Opa1 haploinsufficiency induced altered mitochondrial cristae structure both in vascular smooth muscle and endothelial cells but did not modify protein level of long and short forms of OPA1. In addition, we demonstrated an increase of mitochondrial ROS production, associated with a decrease of superoxide dismutase 1 protein expression. We also observed an increase of apoptosis in vascular cells and a decreased VSMCs proliferation. Blood pressure, vascular contractility, as well as endothelium-dependent and -independent relaxation were similar in Opa1+/- , WT, L-NAME-treated Opa1+/- and WT mice. Nevertheless, chronic NO-synthase inhibition with L-NAME induced a greater hypertension in Opa1+/- than in WT mice without compensatory arterial wall hypertrophy. This was associated with a stronger reduction in endothelium-dependent relaxation due to excessive ROS production. Our results highlight the protective role of mitochondria fusion in the vasculature during hypertension by limiting mitochondria ROS production.
Keywords: Opa1; hypertension; mitochondria; oxidative stress; vascular function.
© 2021 Federation of American Societies for Experimental Biology.
References
REFERENCES
-
- Touyz RM, Schiffrin EL. Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol. 2004;122:339-352.
-
- Kluge MA, Fetterman JL, Vita JA. Mitochondria and endothelial function. Circ Res. 2013;112:1171-1188.
-
- Liu Y, Li H, Bubolz AH, Zhang DX, Gutterman DD. Endothelial cytoskeletal elements are critical for flow-mediated dilation in human coronary arterioles. Med Biol Eng Comput. 2008;46:469-478.
-
- Mironov SL, Ivannikov MV, Johansson M. [Ca2+]i signaling between mitochondria and endoplasmic reticulum in neurons is regulated by microtubules. From mitochondrial permeability transition pore to Ca2+-induced Ca2+ release. J Biol Chem. 2005;280:715-721.
-
- Katakam PV, Wappler EA, Katz PS, et al. Depolarization of mitochondria in endothelial cells promotes cerebral artery vasodilation by activation of nitric oxide synthase. Arterioscler Thromb Vasc Biol. 2013;33:752-759.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases