Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug;52(9):2874-2881.
doi: 10.1161/STROKEAHA.120.033648. Epub 2021 Jun 17.

Utility of the Hospital Frailty Risk Score Derived From Administrative Data and the Association With Stroke Outcomes

Collaborators, Affiliations

Utility of the Hospital Frailty Risk Score Derived From Administrative Data and the Association With Stroke Outcomes

Monique F Kilkenny et al. Stroke. 2021 Aug.

Abstract

Background and purpose: Conditions associated with frailty are common in people experiencing stroke and may explain differences in outcomes. We assessed associations between a published, generic frailty risk score, derived from administrative data, and patient outcomes following stroke/transient ischemic attack; and its accuracy for stroke in predicting mortality compared with other measures of clinical status using coded data.

Methods: Patient-level data from the Australian Stroke Clinical Registry (2009–2013) were linked with hospital admissions data. We used International Statistical Classification of Diseases and Related Health Problems, Tenth Revision codes with a 5-year look-back period to calculate the Hospital Frailty Risk Score (termed Frailty Score hereafter) and summarized results into 4 groups: no-risk (0), low-risk (1–5), intermediate-risk (5–15), and high-risk (>15). Multilevel models, accounting for hospital clustering, were used to assess associations between the Frailty Score and outcomes, including mortality (Cox regression) and readmissions up to 90 days, prolonged acute length of stay (>20 days; logistic regression), and health-related quality of life at 90 to 180 days (quantile regression). The performance of the Frailty Score was then compared with the Charlson and Elixhauser Indices using multiple tests (eg, C statistics) for predicting 30-day mortality. Models were adjusted for covariates including sociodemographics and stroke-related factors.

Results: Among 15 468 adult patients, 15% died ≤90 days. The frailty scores were 9% no risk; 23% low, 45% intermediate, and 22% high. A 1-point increase in frailty (continuous variable) was associated with greater length of stay (ORadjusted, 1.05 [95% CI, 1.04 to 1.06), 90-day mortality (HRadjusted, 1.04 [95% CI, 1.03 to 1.05]), readmissions (ORadjusted, 1.02 [95% CI, 1.02 to 1.03]; and worse health-related quality of life (median difference, −0.010 [95% CI −0.012 to −0.010]). Adjusting for the Frailty Score provided a slightly better explanation of 30-day mortality (eg, larger C statistics) compared with other indices.

Conclusions: Greater frailty was associated with worse outcomes following stroke/transient ischemic attack. The Frailty Score provides equivalent precision compared with the Charlson and Elixhauser indices for assessing risk-adjusted outcomes following stroke/transient ischemic attack.

Keywords: hospitalization; ischemic attack, transient; mortality; register; risk factor.

PubMed Disclaimer

Publication types