An in vitro antiviral activity of iodine complexes against SARS-CoV-2
- PMID: 34136927
- PMCID: PMC8208607
- DOI: 10.1007/s00203-021-02430-3
An in vitro antiviral activity of iodine complexes against SARS-CoV-2
Abstract
Since the emergence of COVID-19 pandemic in China in late 2019, scientists are striving hard to explore non-toxic, viable anti-SARS-CoV-2 compounds or medicines. We determined In vitro anti-SARS-CoV-2 activity of oral formulations (syrup and capsule)of an Iodine-complex (Renessans). First, cell cytotoxicity of Renessans on the Vero cells was determined using MTT assay. Afterwards, the antiviral activity of Renessans was determined using viral inhibition assays and TCID50. For this, nontoxic concentrations of the Renessans were used. The results showed that Renessans is nontoxic to the cells up to 50 µg/mL. At 1.5 µg/mL concentration, SARS-CoV-2 production was significantly reduced to 101.43 TCID50 and 101.58 TCID50 for the syrup and capsule, respectively, as compare to virus infected control cells 106.08 TCID50 and we found the dose dependent inhibition of virus replication in the presence of Renessans. Renessans inhibited SARS-CoV-2 with an EC50 value of 0.425 µg/mL and 0.505 µg/mL for syrup and capsule, respectively. Furthermore, there was no virus detected at concentration of 50 µg/mL of Renessans. This study indicates that Renessans, containing iodine, have potential activity against SARS-CoV-2 which needs to be further investigated in human clinical trials.
Keywords: COVID-19; Iodine complex; Renessans; SARS-CoV-2; Virus.
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Alexander E, Gorbalenya AAG, Lauber C, Sidorov IA, Leontovich AM, Penzar D, Samborskiy DV, Baker SC, Baric RS, de Groot RJ, Drosten C, Haagmans BL, Neuman BW, Perlman S, Poon LLM, Sola I, Ziebuhr J. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5:536–544. doi: 10.1038/s41564-020-0695-z. - DOI - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
