Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Aug;95(1):153-61.
doi: 10.1016/s0041-008x(88)80014-0.

The dose-dependent deposition of cadmium into organs of Japanese quail following oral administration

Affiliations

The dose-dependent deposition of cadmium into organs of Japanese quail following oral administration

A M Scheuhammer. Toxicol Appl Pharmacol. 1988 Aug.

Abstract

The accumulation and disposition of Cd2+ as CdCl2 administered orally to Japanese quail (Coturnix coturnix) was investigated. Birds received 0.01, 0.10, 1.0, 50, 500, 5000, or 50,000 micrograms Cd/kg/day for 4 consecutive days by gastric tube, and were killed 4 days after the final dose. The percentage of the total administered dose recovered in liver + kidneys + duodenum was 0.7% or less in all but the highest dose, for which recovery was approximately 2%. Only at the highest dose did the hepatic Cd concentration exceed that of the kidney, and only at this dose was there any appreciable increase in metallothionein (MT) concentrations in the liver and kidney. Duodenal cytosol was found to contain high levels (300-1300 micrograms/g) of endogenous MT-like proteins, probably due to the relatively high Zn concentration (approximately 185 ppm) of the commercial diet eaten by the quail. In the small intestine, Cd2+ taken up after trace doses of oral 109Cd2+ was found to be exclusively bound to these 10,000-MW, or lower MW, ligands. In the liver, MT synthesis was accompanied by increased concentrations of Cd and Zn (but not Cu) associated with the MT fractions, whereas in the kidney, all three metals were elevated in response to Cd-induced MT synthesis. A major conclusion of the present study is that, in response to environmentally relevant (less than 10 micrograms/kg/day po) doses of Cd2+, absorbed Cd is transported in blood primarily in a form which enhances deposition in the kidney. This behavior is consistent with the pharmacokinetics of Cd-MT.

PubMed Disclaimer

LinkOut - more resources