Lens regeneration: scientific discoveries and clinical possibilities
- PMID: 34143397
- DOI: 10.1007/s11033-021-06489-5
Lens regeneration: scientific discoveries and clinical possibilities
Abstract
In the process of exploring new methods for cataract treatment, lens regeneration is an ideal strategy for effectively restoring accommodative vision and avoiding postoperative complications and has great clinical potential. Lens regeneration, which is not a simple repetition of lens development, depends on the complex regulatory network comprising the FGF, BMP/TGF-β, Notch, and Wnt signaling pathways. Current research mainly focuses on in situ and in vitro lens regeneration. On the one hand, the possibility of the autologous stem cell in situ regeneration of functional lenses has been confirmed; on the other hand, both embryonic stem cells and induced pluripotent stem cells have been induced into lentoid bodies in vitro which are similar to the natural lens to a certain extent. This article will briefly summarize the regulatory mechanisms of lens development, describe the recent progress of lens regeneration, explore the key molecular signaling pathways, and, more importantly, discuss the prospects and challenges of their clinical applications to provide reference for clinical transformations.
Keywords: Cataract; Lens; Regeneration; Stem cells.
Similar articles
-
Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract.Exp Eye Res. 2016 Jan;142:92-101. doi: 10.1016/j.exer.2015.02.004. Epub 2015 May 21. Exp Eye Res. 2016. PMID: 26003864 Free PMC article. Review.
-
Generation of Functional Lentoid Bodies From Human Induced Pluripotent Stem Cells Derived From Urinary Cells.Invest Ophthalmol Vis Sci. 2017 Jan 1;58(1):517-527. doi: 10.1167/iovs.16-20504. Invest Ophthalmol Vis Sci. 2017. PMID: 28125839
-
Wnt5a Contributes to the Differentiation of Human Embryonic Stem Cells into Lentoid Bodies Through the Noncanonical Wnt/JNK Signaling Pathway.Invest Ophthalmol Vis Sci. 2018 Jul 2;59(8):3449-3460. doi: 10.1167/iovs.18-23902. Invest Ophthalmol Vis Sci. 2018. PMID: 30025083
-
Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions.FASEB J. 2010 Sep;24(9):3274-83. doi: 10.1096/fj.10-157255. Epub 2010 Apr 21. FASEB J. 2010. PMID: 20410439 Free PMC article.
-
Cell signaling pathways in vertebrate lens regeneration.Curr Top Microbiol Immunol. 2013;367:75-98. doi: 10.1007/82_2012_289. Curr Top Microbiol Immunol. 2013. PMID: 23224710 Free PMC article. Review.
Cited by
-
Lens regeneration in situ using hESCs-derived cells -similar to natural lens.iScience. 2023 May 19;26(6):106921. doi: 10.1016/j.isci.2023.106921. eCollection 2023 Jun 16. iScience. 2023. PMID: 37378332 Free PMC article.
-
The miRNA-34a/Sirt1/p53 pathway in a rat model of lens regeneration.Ann Transl Med. 2022 Jun;10(11):636. doi: 10.21037/atm-22-2099. Ann Transl Med. 2022. PMID: 35813324 Free PMC article.
-
Grand Challenges and Opportunities in Surgical Ophthalmology: Together for a Shared Future.Front Ophthalmol (Lausanne). 2022 Jul 4;2:922240. doi: 10.3389/fopht.2022.922240. eCollection 2022. Front Ophthalmol (Lausanne). 2022. PMID: 38983527 Free PMC article. No abstract available.
-
Lens Regeneration: The Application of iSyTE and In Silico Approaches to Evaluate Gene Expression in Lens Organoids.Methods Mol Biol. 2025;2848:37-58. doi: 10.1007/978-1-0716-4087-6_3. Methods Mol Biol. 2025. PMID: 39240515
-
Nicotinamide improves in vitro lens regeneration in a mouse capsular bag model.Stem Cell Res Ther. 2022 May 12;13(1):198. doi: 10.1186/s13287-022-02862-8. Stem Cell Res Ther. 2022. PMID: 35550648 Free PMC article.
References
-
- Song P, Wang H, Theodoratou E, Chan KY, Rudan I (2018) The national and subnational prevalence of cataract and cataract blindness in China: a systematic review and meta-analysis. J Glob Health 8:010804. https://doi.org/10.7189/jogh.08-010804 - DOI - PubMed - PMC
-
- Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, Leasher J, Limburg H, Naidoo K, Pesudovs K, Silvester A, Stevens GA, Tahhan N, Wong TY, Taylor HR (2017) Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 5:e1221–e1234. https://doi.org/10.1016/s2214-109x(17)30393-5 - DOI - PubMed
-
- Liu YC, Wilkins M, Kim T, Malyugin B, Mehta JS (2017) Cataracts. Lancet 390:600–612. https://doi.org/10.1016/s0140-6736(17)30544-5 - DOI - PubMed
-
- Lin H, Ouyang H, Zhu J, Huang S, Liu Z, Chen S, Cao G, Li G, Signer RA, Xu Y, Chung C, Zhang Y, Lin D, Patel S, Wu F, Cai H, Hou J, Wen C, Jafari M, Liu X, Luo L, Zhu J, Qiu A, Hou R, Chen B, Chen J, Granet D, Heichel C, Shang F, Li X, Krawczyk M, Skowronska-Krawczyk D, Wang Y, Shi W, Chen D, Zhong Z, Zhong S, Zhang L, Chen S, Morrison SJ, Maas RL, Zhang K, Liu Y (2016) Lens regeneration using endogenous stem cells with gain of visual function. Nature 531:323–328. https://doi.org/10.1038/nature17181 - DOI - PubMed - PMC
-
- Ooto S, Haruta M, Honda Y, Kawasaki H, Sasai Y, Takahashi M (2003) Induction of the differentiation of lentoids from primate embryonic stem cells. Invest Ophthalmol Vis Sci 44:2689–2693. https://doi.org/10.1167/iovs.02-1168 - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical