Control of intestinal inflammation by glycosylation-dependent lectin-driven immunoregulatory circuits
- PMID: 34144987
- PMCID: PMC8213219
- DOI: 10.1126/sciadv.abf8630
Control of intestinal inflammation by glycosylation-dependent lectin-driven immunoregulatory circuits
Abstract
Diverse immunoregulatory circuits operate to preserve intestinal homeostasis and prevent inflammation. Galectin-1 (Gal1), a β-galactoside-binding protein, promotes homeostasis by reprogramming innate and adaptive immunity. Here, we identify a glycosylation-dependent "on-off" circuit driven by Gal1 and its glycosylated ligands that controls intestinal immunopathology by targeting activated CD8+ T cells and shaping the cytokine profile. In patients with inflammatory bowel disease (IBD), augmented Gal1 was associated with dysregulated expression of core 2 β6-N-acetylglucosaminyltransferase 1 (C2GNT1) and α(2,6)-sialyltransferase 1 (ST6GAL1), glycosyltransferases responsible for creating or masking Gal1 ligands. Mice lacking Gal1 exhibited exacerbated colitis and augmented mucosal CD8+ T cell activation in response to 2,4,6-trinitrobenzenesulfonic acid; this phenotype was partially ameliorated by treatment with recombinant Gal1. While C2gnt1-/- mice exhibited aggravated colitis, St6gal1-/- mice showed attenuated inflammation. These effects were associated with intrinsic T cell glycosylation. Thus, Gal1 and its glycosylated ligands act to preserve intestinal homeostasis by recalibrating T cell immunity.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Figures
Similar articles
-
Suppression of age-related salivary gland autoimmunity by glycosylation-dependent galectin-1-driven immune inhibitory circuits.Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6630-6639. doi: 10.1073/pnas.1922778117. Epub 2020 Mar 11. Proc Natl Acad Sci U S A. 2020. PMID: 32161138 Free PMC article.
-
Galectin-3 suppresses mucosal inflammation and reduces disease severity in experimental colitis.J Mol Med (Berl). 2016 May;94(5):545-56. doi: 10.1007/s00109-015-1368-x. Epub 2015 Dec 2. J Mol Med (Berl). 2016. PMID: 26631140
-
Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors.Cell. 2014 Feb 13;156(4):744-58. doi: 10.1016/j.cell.2014.01.043. Cell. 2014. PMID: 24529377
-
Development, validation and implementation of an in vitro model for the study of metabolic and immune function in normal and inflamed human colonic epithelium.Dan Med J. 2015 Jan;62(1):B4973. Dan Med J. 2015. PMID: 25557335 Review.
-
Interplay between Cytokine Circuitry and Transcriptional Regulation Shaping Helper T Cell Pathogenicity and Plasticity in Inflammatory Bowel Disease.Int J Mol Sci. 2020 May 11;21(9):3379. doi: 10.3390/ijms21093379. Int J Mol Sci. 2020. PMID: 32403220 Free PMC article. Review.
Cited by
-
Galectin-1 and Galectin-3 in B-Cell Precursor Acute Lymphoblastic Leukemia.Int J Mol Sci. 2022 Nov 18;23(22):14359. doi: 10.3390/ijms232214359. Int J Mol Sci. 2022. PMID: 36430839 Free PMC article.
-
Exploring galectin interactions with human milk oligosaccharides and blood group antigens identifies BGA6 as a functional galectin-4 ligand.J Biol Chem. 2024 Aug;300(8):107573. doi: 10.1016/j.jbc.2024.107573. Epub 2024 Jul 14. J Biol Chem. 2024. PMID: 39009340 Free PMC article.
-
Targeting galectin-driven regulatory circuits in cancer and fibrosis.Nat Rev Drug Discov. 2023 Apr;22(4):295-316. doi: 10.1038/s41573-023-00636-2. Epub 2023 Feb 9. Nat Rev Drug Discov. 2023. PMID: 36759557 Review.
-
Immune regulatory networks coordinated by glycans and glycan-binding proteins in autoimmunity and infection.Cell Mol Immunol. 2023 Oct;20(10):1101-1113. doi: 10.1038/s41423-023-01074-1. Epub 2023 Aug 15. Cell Mol Immunol. 2023. PMID: 37582971 Free PMC article. Review.
-
sEV-mediated intercellular transformation from MGAT4AHigh to MGAT4ALow tumor cells via the HOTAIRM1/miR-196b-5p axis promotes apoptosis resistance in CTCL.Oncogene. 2025 Jun;44(23):1856-1874. doi: 10.1038/s41388-025-03356-6. Epub 2025 Mar 28. Oncogene. 2025. PMID: 40155530 Free PMC article.
References
-
- Knowles S. R., Graff L. A., Wilding H., Hewitt C., Keefer L., Mikocka-Walus A., Quality of life in inflammatory bowel disease: A systematic review and meta-analyses—Part I. Inflamm. Bowel Dis. 24, 742–751 (2018). - PubMed
-
- Ng S. C., Shi H. Y., Hamidi N., Underwood F. E., Tang W., Benchimol E. I., Panaccione R., Ghosh S., Wu J. C. Y., Chan F. K. L., Sung J. J. Y., Kaplan G. G., Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet (London, England). 390, 2769–2778 (2017). - PubMed
-
- Olivera P., Danese S., Peyrin-Biroulet L., Next generation of small molecules in inflammatory bowel disease. Gut 66, 199–209 (2017). - PubMed
-
- Moschen A. R., Tilg H., Raine T., IL-12, IL-23 and IL-17 in IBD: Immunobiology and therapeutic targeting. Nat. Rev. Gastroenterol. Hepatol. 16, 185–196 (2019). - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
