Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 1:184:843-856.
doi: 10.1016/j.ijbiomac.2021.06.075. Epub 2021 Jun 16.

Inhibitory mechanism of xanthine oxidase activity by caffeoylquinic acids in vitro

Affiliations

Inhibitory mechanism of xanthine oxidase activity by caffeoylquinic acids in vitro

Yin Wan et al. Int J Biol Macromol. .

Abstract

In this study, the inhibitory activities of eight caffeoylquinic acids (CQAs) against xanthine oxidase (XOD) in vitro were investigated, and the interaction mechanisms between each compound and XOD were studied. HPLC and fluorescence spectra showed that the inhibitory activities of dicaffeoylquinic acids (diCQAs) were higher than that of monocaffeoylquinic acids (monoCQAs), due to the main roles of hydrophobic interaction and hydrogen bond between XOD and diCQAs. Both the binding constant and the lowest binding energy data indicated that the affinities of diCQAs to XOD were stronger than that of monoCQAs. Circular dichroism showed that the structure of XOD was compacted with the increased of α-helix content, resulting in decreased enzyme catalytic activity. Molecular docking revealed that CQAs preferentially bind to the flavin adenine dinucleotide region in XOD. These results provided the mechanisms of CQAs on inhibiting XOD and the further utilization of CQAs as XOD inhibitors to prevent hyperuricemia.

Keywords: Caffeoylquinic acids; Inhibitory mechanism; Xanthine oxidase.

PubMed Disclaimer

MeSH terms

LinkOut - more resources