Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep 15:196:108671.
doi: 10.1016/j.neuropharm.2021.108671. Epub 2021 Jun 18.

MicroRNA-23b attenuates tau pathology and inhibits oxidative stress by targeting GnT-III in Alzheimer's disease

Affiliations

MicroRNA-23b attenuates tau pathology and inhibits oxidative stress by targeting GnT-III in Alzheimer's disease

Kemeng Pan et al. Neuropharmacology. .

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease, the main pathological features include deposition of neurofibrillary tangles composed of the abnormally hyperphosphorylated tau protein and plaques deposition composed of β-amyloid (Aβ) peptide. MicroRNAs and aberrant glycosylation both play key roles in a variety of diseases, especially AD. Our previous study showed that N-acetylglucosaminyltransferase III (GnT-III) was expressed strongly in AD model mice. GnT-III is a glycosyltransferase responsible for synthesizing a bisecting N-acetylglucosamine residue. Here, we report the potential therapeutic effects of microRNA-23b (miR-23b) against AD by targeting GnT-III. In this study, the role of miR-23b in GnT-III-mediated amelioration of AD-related symptoms and pathologies, and mechanisms were investigated. We used Aβ1-42-induced mouse and PC12 cell models to evaluate the effects of miR-23b on cognitive impairment, neurotoxicity, tau, and amyloid pathology. Bioinformatics analysis showed that GnT-III may be targeted by miR-23b, and it was verified by dual-luciferase reporter gene assays. Furthermore, a mechanistic study showed that activation of the Akt/GSK-3β signaling pathway can contribute to tau-lesion inhibition by miR-23b, and miR-23b can also restrain oxidative stress by altering Aβ-precursor protein processing. Taken together, we conclude that overexpression of miR-23b can interrupt the pathogenesis of AD.

Keywords: APP; Alzheimer’s disease; MicroRNA-23b; N-acetylglucosaminyltransferase III; Oxidative stress; Tau.

PubMed Disclaimer

Publication types

MeSH terms

Substances