Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Aug 1:43:116272.
doi: 10.1016/j.bmc.2021.116272. Epub 2021 Jun 10.

Mechanism and structure based design of inhibitors of AMP and adenosine deaminase

Affiliations

Mechanism and structure based design of inhibitors of AMP and adenosine deaminase

Stephen D Lindell et al. Bioorg Med Chem. .

Abstract

Inhibitors of the enzyme adenosine monophosphate deaminase (AMPD) show interesting levels of herbicidal activity. An enzyme mechanism-based approach has been used to design new inhibitors of AMPD starting from nebularine (6) and resulting in the synthesis of 2-deoxy isonebularine (16). This compound is a potent inhibitor of the related enzyme adenosine deaminase (ADA; IC50 16 nM), binding over 5000 times more strongly than nebularine. It is proposed that the herbicidal activity of compound 16 is due to 5́-phosphorylation in planta to give an inhibitor of AMPD. Subsequently, an enzyme structure-based approach was used to design new non-ribosyl AMPD inhibitors. The initial lead structure was discovered by in silico screening of a virtual library against plant AMPD. In a second step, binding to AMPD was further optimised via more detailed molecular modeling leading to 2-(benzyloxy)-5-(imidazo[2,1-f][1,2,4]triazin-7-yl)benzoic acid (36) (IC50 300 nM). This compound does not inhibit ADA and shows excellent selectivity for plant over human AMPD.

PubMed Disclaimer

MeSH terms

LinkOut - more resources