The Evolutionary History of Wild, Domesticated, and Feral Brassica oleracea (Brassicaceae)
- PMID: 34157722
- PMCID: PMC8476135
- DOI: 10.1093/molbev/msab183
The Evolutionary History of Wild, Domesticated, and Feral Brassica oleracea (Brassicaceae)
Abstract
Understanding the evolutionary history of crops, including identifying wild relatives, helps to provide insight for conservation and crop breeding efforts. Cultivated Brassica oleracea has intrigued researchers for centuries due to its wide diversity in forms, which include cabbage, broccoli, cauliflower, kale, kohlrabi, and Brussels sprouts. Yet, the evolutionary history of this species remains understudied. With such different vegetables produced from a single species, B. oleracea is a model organism for understanding the power of artificial selection. Persistent challenges in the study of B. oleracea include conflicting hypotheses regarding domestication and the identity of the closest living wild relative. Using newly generated RNA-seq data for a diversity panel of 224 accessions, which represents 14 different B. oleracea crop types and nine potential wild progenitor species, we integrate phylogenetic and population genetic techniques with ecological niche modeling, archaeological, and literary evidence to examine relationships among cultivars and wild relatives to clarify the origin of this horticulturally important species. Our analyses point to the Aegean endemic B. cretica as the closest living relative of cultivated B. oleracea, supporting an origin of cultivation in the Eastern Mediterranean region. Additionally, we identify several feral lineages, suggesting that cultivated plants of this species can revert to a wild-like state with relative ease. By expanding our understanding of the evolutionary history in B. oleracea, these results contribute to a growing body of knowledge on crop domestication that will facilitate continued breeding efforts including adaptation to changing environmental conditions.
Keywords: Mediterranean; cabbage; crop wild relatives; domestication; ecological niche; origin.
© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Figures
References
-
- Acevedo P, Jiménez-Valverde A, Lobo JM, Real R.. 2012. Delimiting the geographical background in species distribution modelling. J Biogeogr. 39(8):1383–1390.
-
- Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP.. 2015. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38(5):541–545.
-
- Allaby R.2010. Integrating the processes in the evolutionary system of domestication. J Exp Bot. 61(4):935–944. - PubMed
-
- Allender CJ, Allainguillaume J, Lynn J, King GJ.. 2007. Simple sequence repeats reveal uneven distribution of genetic diversity in chloroplast genomes of Brassica oleracea L. and (n = 9) wild relatives. Theor Appl Genet. 114(4):609–618. - PubMed
-
- Arias T, Pires JC.. 2012. A fully resolved chloroplast phylogeny of the Brassica crops and wild relatives (Brassicaceae: Brassiceae): Novel clades and potential taxonomic implications. Taxon 61(5):980–988.
Publication types
MeSH terms
Associated data
LinkOut - more resources
Full Text Sources
Other Literature Sources
