Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Mar 9;122(5):5209-5232.
doi: 10.1021/acs.chemrev.1c00176. Epub 2021 Jun 23.

Contact Electrification at the Liquid-Solid Interface

Affiliations
Review

Contact Electrification at the Liquid-Solid Interface

Shiquan Lin et al. Chem Rev. .

Abstract

Interfaces between a liquid and a solid (L-S) are the most important surface science in chemistry, catalysis, energy, and even biology. Formation of an electric double layer (EDL) at the L-S interface has been attributed due to the adsorption of a layer of ions at the solid surface, which causes the ions in the liquid to redistribute. Although the existence of a layer of charges on a solid surface is always assumed, the origin of the charges is not extensively explored. Recent studies of contact electrification (CE) between a liquid and a solid suggest that electron transfer plays a dominant role at the initial stage for forming the charge layer at the L-S interface. Here, we review the recent works about electron transfer in liquid-solid CE, including scenerios such as liquid-insulator, liquid-semiconductor, and liquid-metal. Formation of the EDL is revisited considering the existence of electron transfer at the L-S interface. Furthermore, the triboelectric nanogenerator (TENG) technique based on the liquid-solid CE is introduced, which can be used not only for harvesting mechanical energy from a liquid but also as a probe for probing the charge transfer at liquid-solid interfaces.

PubMed Disclaimer

Publication types

LinkOut - more resources