Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul 2;86(13):8955-8969.
doi: 10.1021/acs.joc.1c00884. Epub 2021 Jun 23.

Base-Catalyzed, Solvent-Free Synthesis of Rigid V-Shaped Epoxydibenzo[ b, f][1,5]diazocines

Affiliations

Base-Catalyzed, Solvent-Free Synthesis of Rigid V-Shaped Epoxydibenzo[ b, f][1,5]diazocines

Michał Michalak et al. J Org Chem. .

Abstract

A novel method for the synthesis of epoxydibenzo[b,f][1,5]diazocines exhibiting a V-shaped molecular architecture is reported. The unique approach is based on unprecedented base-catalyzed, solvent-free autocondensation and cross-condensation of fluorinated o-aminophenones. The structure of the newly synthesized diazocines was confirmed independently by X-ray analysis and chiroptical methods. The rigidity of the diazocine scaffold allowed for the separation of the racemate into single enantiomers that proved to be thermally stable up to 140 °C. Furthermore, the inertness of the diazocine scaffold was demonstrated by performing a series of typical transformations, including transition metal-catalyzed reactions, proceeding without affecting the bis-hemiaminal subunit.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Examples of Rigid Molecules with V-Shaped Geometry
Scheme 2
Scheme 2. 1,1,3,3-Tetramethylguanidine (TMG)-Catalyzed Solvent-Free Autocondensation of Aminophenones
For 16 h at 120 °C. For 48 h at 120 °C. For 16 h at 80 °C.
Scheme 3
Scheme 3. TMG-Catalyzed Solvent-Free Cross-condensation of Aminophenones
For 48 h at 120 °C. For 16 h at 120 °C.
Scheme 4
Scheme 4. Postformation Modification of the Diazocine Core (TBD = 1,5,7-triazabicyclo[4.4.0]dec-5-ene)
Isolated yield after chromatography. Isolated yield after precipitation from the reaction mixture.
Scheme 5
Scheme 5. (A) Separation of Racemic (±)-2a, (B) Comparison of Experimental and Calculated ECD and UV Data, and (C) VCD and IR Spectra of Enantiomers of 2a
The calculations of the ECD and UV spectra were carried out at the CAM-B3LYP/def2-TZVP/PCM/CH3CN level of theory, while the VCD and IR spectra were calculated at the ωB97X-D/6-311+G(d,p)/ PCM/CH3CN level. More experimental and calculation details are provided in the Supporting Information. The inset in part B shows the geometry of the calculated structure of (+)-2a.

References

    1. Klärner F.-G.; Schrader T. Aromatic Interactions by Molecular Tweezers and Clips in Chemical and Biological Systems. Acc. Chem. Res. 2013, 46, 967–978. 10.1021/ar300061c. - DOI - PubMed
    2. Ibáñez S.; Poyatos M.; Peris E. N-Heterocyclic Carbenes: A Door Open to Supramolecular Organometallic Chemistry. Acc. Chem. Res. 2020, 53, 1401–1413. 10.1021/acs.accounts.0c00312. - DOI - PubMed
    3. Han Y.; Tian Y.; Li Z.; Wang F. Donor–acceptor-type supramolecular polymers on the basis of preorganized molecular tweezers/guest complexation. Chem. Soc. Rev. 2018, 47, 5165–5176. 10.1039/C7CS00802C. - DOI - PubMed
    4. Schrader T.; Bitan G.; Klärner F.-G. Molecular tweezers for lysine and arginine – powerful inhibitors of pathologic protein aggregation. Chem. Commun. 2016, 52, 11318–11334. 10.1039/C6CC04640A. - DOI - PMC - PubMed
    5. Krykun S.; Dekhtiarenko M.; Canevet D.; Carré V.; Aubriet F.; Levillain E.; Allain M.; Voitenko Z.; Sallé M.; Goeb S. Metalla-Assembled Electron-Rich Tweezers: Redox-Controlled Guest Release Through Supramolecular Dimerization. Angew. Chem., Int. Ed. 2020, 59, 716–720. 10.1002/anie.201912016. - DOI - PubMed
    6. Knezevic M.; Heilmann M.; Piccini G. M.; Tiefenbacher K. Overriding Intrinsic Reactivity in Aliphatic C–H Oxidation: Preferential C3/C4 Oxidation of Aliphatic Ammonium Substrates. Angew. Chem., Int. Ed. 2020, 59, 12387–12391. 10.1002/anie.202004242. - DOI - PubMed
    7. Lindqvist M.; Borre K.; Axenov K.; Kótai B.; Nieger M.; Leskelä M.; Pápai I.; Repo T. Chiral Molecular Tweezers: Synthesis and Reactivity in Asymmetric Hydrogenation. J. Am. Chem. Soc. 2015, 137, 4038–4041. 10.1021/ja512658m. - DOI - PubMed
    8. Takeda M.; Hiroto S.; Yokoi H.; Lee S.; Kim D.; Shinokubo H. Azabuckybowl-Based Molecular Tweezers as C60 and C70 Receptors. J. Am. Chem. Soc. 2018, 140, 6336–6342. 10.1021/jacs.8b02327. - DOI - PubMed
    9. Doistau B.; Benda L.; Cantin J.-L.; Chamoreau L.-M.; Ruiz E.; Marvaud V.; Hasenknopf B.; Vives G. Six States Switching of Redox-Active Molecular Tweezers by Three Orthogonal Stimuli. J. Am. Chem. Soc. 2017, 139, 9213–9220. 10.1021/jacs.7b02945. - DOI - PubMed
    10. Mastalerz M. Single-Handed Towards Nanosized Organic Molecules. Angew. Chem., Int. Ed. 2016, 55, 45–47. 10.1002/anie.201509420. - DOI - PubMed
    11. Bier D.; Rose R.; Bravo-Rodriguez K.; Bartel M.; Ramirez-Anguita J. M.; Dutt S.; Wilch C.; Klärner F.-G.; Sanchez-Garcia E.; Schrader T.; Ottmann C. Molecular tweezers modulate 14–3-3 protein–protein interactions. Nat. Chem. 2013, 5, 234–239. 10.1038/nchem.1570. - DOI - PubMed
    1. Dalgarno S. J.; Power N. P.; Atwood J. L. Metallo-supramolecular capsules. Coord. Chem. Rev. 2008, 252, 825–841. 10.1016/j.ccr.2007.10.010. - DOI
    2. Catti L.; Zhang Q.; Tiefenbacher K. Advantages of Catalysis in Self-Assembled Molecular Capsules. Chem. - Eur. J. 2016, 22, 9060–9066. 10.1002/chem.201600726. - DOI - PubMed
    3. Ferrand Y.; Huc I. Designing Helical Molecular Capsules Based on Folded Aromatic Amide Oligomers. Acc. Chem. Res. 2018, 51, 970–977. 10.1021/acs.accounts.8b00075. - DOI - PubMed
    4. Jędrzejewska H.; Szumna A. Making a Right or Left Choice: Chiral Self-Sorting as a Tool for the Formation of Discrete Complex Structures. Chem. Rev. 2017, 117, 4863–4899. 10.1021/acs.chemrev.6b00745. - DOI - PubMed
    5. Szumna A. Inherently chiral concave molecules—from synthesis to applications. Chem. Soc. Rev. 2010, 39, 4274–4285. 10.1039/b919527k. - DOI - PubMed
    6. La Manna P.; Talotta C.; Floresta G.; De Rosa M.; Soriente A.; Rescifina A.; Gaeta C.; Neri P. Mild Friedel–Crafts Reactions inside a Hexameric Resorcinarene Capsule: C–Cl Bond Activation through Hydrogen Bonding to Bridging Water Molecules. Angew. Chem., Int. Ed. 2018, 57, 5423–5428. 10.1002/anie.201801642. - DOI - PubMed
    7. Riwar L.-J.; Trapp N.; Root K.; Zenobi R.; Diederich F. Supramolecular Capsules: Strong versus Weak Chalcogen Bonding. Angew. Chem., Int. Ed. 2018, 57, 17259–17264. 10.1002/anie.201812095. - DOI - PubMed
    8. Dumele O.; Trapp N.; Diederich F. Halogen Bonding Molecular Capsules. Angew. Chem., Int. Ed. 2015, 54, 12339–12344. 10.1002/anie.201502960. - DOI - PubMed
    9. Biros S. M.; Rebek J. Jr. Structure and binding properties of water-soluble cavitands and capsules. Chem. Soc. Rev. 2007, 36, 93–104. 10.1039/B508530F. - DOI - PubMed
    10. Yoshizawa M.; Catti L. Bent Anthracene Dimers as Versatile Building Blocks for Supramolecular Capsules. Acc. Chem. Res. 2019, 52, 2392–2404. 10.1021/acs.accounts.9b00301. - DOI - PubMed
    1. Nurttila S. S.; Linnebank P. R.; Krachko T.; Reek J. N. H. Supramolecular Approaches To Control Activity and Selectivity in Hydroformylation Catalysis. ACS Catal. 2018, 8, 3469–3488. 10.1021/acscatal.8b00288. - DOI - PMC - PubMed
    2. Jans A. C. H.; Caumes X.; Reek J. N. H. Gold Catalysis in (Supra)Molecular Cages to Control Reactivity and Selectivity. ChemCatChem 2019, 11, 287–297. 10.1002/cctc.201801399. - DOI - PMC - PubMed
    3. Ahmad N.; Younus H. A.; Chughtai A. H.; Verpoort F. Metal–organic molecular cages: applications of biochemical implications. Chem. Soc. Rev. 2015, 44, 9–25. 10.1039/C4CS00222A. - DOI - PubMed
    4. Jin Y.; Yu C.; Denman R. J.; Zhang W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 2013, 42, 6634–6654. 10.1039/c3cs60044k. - DOI - PubMed
    5. McConnell A. J.; Wood C. S.; Neelakandan P. P.; Nitschke J. R. Stimuli-Responsive Metal–Ligand Assemblies. Chem. Rev. 2015, 115, 7729–7793. 10.1021/cr500632f. - DOI - PubMed
    6. Han M.; Engelhard D. M.; Clever G. H. Self-assembled coordination cages based on banana-shaped ligands. Chem. Soc. Rev. 2014, 43, 1848–1860. 10.1039/C3CS60473J. - DOI - PubMed
    7. Amouri H.; Desmarets C.; Moussa J. Confined Nanospaces in Metallocages: Guest Molecules, Weakly Encapsulated Anions, and Catalyst Sequestration. Chem. Rev. 2012, 112, 2015–2041. 10.1021/cr200345v. - DOI - PubMed
    8. Holst J. R.; Trewin A.; Cooper A. I. Porous organic molecules. Nat. Chem. 2010, 2, 915–920. 10.1038/nchem.873. - DOI - PubMed
    1. Tröger J. Ueber einige mittelst nascirenden Formaldehydes entstehende Basen. J. Prakt. Chem. 1887, 36, 225–245. 10.1002/prac.18870360123. - DOI
    2. Spielman M. A. The Structure of Troeger’s Base. J. Am. Chem. Soc. 1935, 57, 583–585. 10.1021/ja01306a060. - DOI
    1. Webb T. H.; Suh H.; Wilcox C. S. Chemistry of synthetic receptors and functional group arrays. 16. Enantioselective and diastereoselective molecular recognition of alicyclic substrates in aqueous media by a chiral, resolved synthetic receptor. J. Am. Chem. Soc. 1991, 113, 8554–8555. 10.1021/ja00022a070. - DOI
    2. Adrian J. C.; Wilcox C. S. Chemistry of synthetic receptors and functional group arrays. 10. Orderly functional group dyads. Recognition of biotin and adenine derivatives by a new synthetic host. J. Am. Chem. Soc. 1989, 111, 8055–8057. 10.1021/ja00202a078. - DOI
    3. Manjula A.; Nagarajan M. New supramolecular hosts: Synthesis and cation binding studies of novel Tröger’s base-crown ether composites. Tetrahedron 1997, 53, 11859–11868. 10.1016/S0040-4020(97)00759-X. - DOI
    4. Yuan C.; Zhang Y.; Xi H.; Tao X. An acidic pH fluorescent probe based on Tröger’s base. RSC Adv. 2017, 7, 55577–55581. 10.1039/C7RA11228A. - DOI
    5. Shanmugaraju S.; Dabadie C.; Byrne K.; Savyasachi A. J.; Umadevi D.; Schmitt W.; Kitchen J. A.; Gunnlaugsson T. A supramolecular Tröger’s base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water. Chem. Sci. 2017, 8, 1535–1546. 10.1039/C6SC04367D. - DOI - PMC - PubMed
    6. Delente J. M.; Umadevi D.; Shanmugaraju S.; Kotova O.; Watson G. W.; Gunnlaugsson T. Aggregation induced emission (AIE) active 4-amino-1,8-naphthalimide-Tröger’s base for the selective sensing of chemical explosives in competitive aqueous media. Chem. Commun. 2020, 56, 2562–2565. 10.1039/C9CC08457F. - DOI - PubMed
    7. Yuan C.; Li J.; Xi H.; Li Y. A sensitive pyridine-containing turn-off fluorescent probe for pH detection. Mater. Lett. 2019, 236, 9–12. 10.1016/j.matlet.2018.10.060. - DOI
    8. Aroche D. M. P.; Vargas J. P.; Nogara P. A.; da Silveira Santos F.; da Rocha J. B. T.; Lüdtke D. S.; Rodembusch F. S. Glycoconjugates Based on Supramolecular Tröger’s Base Scaffold: Synthesis, Photophysics, Docking, and BSA Association Study. ACS Omega 2019, 4, 13509–13519. 10.1021/acsomega.9b01857. - DOI - PMC - PubMed
    9. Trupp L.; Bruttomesso A. C.; Vardé M.; Eliseeva S. V.; Ramírez J. A.; Petoud S.; Barja B. C. Innovative Multipodal Ligands Derived from Tröger’s Bases for the Sensitization of Lanthanide(III) Luminescence. Chem. - Eur. J. 2020, 26, 16900–16909. 10.1002/chem.202003524. - DOI - PubMed