Base-Catalyzed, Solvent-Free Synthesis of Rigid V-Shaped Epoxydibenzo[ b, f][1,5]diazocines
- PMID: 34161097
- PMCID: PMC8279491
- DOI: 10.1021/acs.joc.1c00884
Base-Catalyzed, Solvent-Free Synthesis of Rigid V-Shaped Epoxydibenzo[ b, f][1,5]diazocines
Abstract
A novel method for the synthesis of epoxydibenzo[b,f][1,5]diazocines exhibiting a V-shaped molecular architecture is reported. The unique approach is based on unprecedented base-catalyzed, solvent-free autocondensation and cross-condensation of fluorinated o-aminophenones. The structure of the newly synthesized diazocines was confirmed independently by X-ray analysis and chiroptical methods. The rigidity of the diazocine scaffold allowed for the separation of the racemate into single enantiomers that proved to be thermally stable up to 140 °C. Furthermore, the inertness of the diazocine scaffold was demonstrated by performing a series of typical transformations, including transition metal-catalyzed reactions, proceeding without affecting the bis-hemiaminal subunit.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





References
-
- Klärner F.-G.; Schrader T. Aromatic Interactions by Molecular Tweezers and Clips in Chemical and Biological Systems. Acc. Chem. Res. 2013, 46, 967–978. 10.1021/ar300061c. - DOI - PubMed
- Ibáñez S.; Poyatos M.; Peris E. N-Heterocyclic Carbenes: A Door Open to Supramolecular Organometallic Chemistry. Acc. Chem. Res. 2020, 53, 1401–1413. 10.1021/acs.accounts.0c00312. - DOI - PubMed
- Han Y.; Tian Y.; Li Z.; Wang F. Donor–acceptor-type supramolecular polymers on the basis of preorganized molecular tweezers/guest complexation. Chem. Soc. Rev. 2018, 47, 5165–5176. 10.1039/C7CS00802C. - DOI - PubMed
- Schrader T.; Bitan G.; Klärner F.-G. Molecular tweezers for lysine and arginine – powerful inhibitors of pathologic protein aggregation. Chem. Commun. 2016, 52, 11318–11334. 10.1039/C6CC04640A. - DOI - PMC - PubMed
- Krykun S.; Dekhtiarenko M.; Canevet D.; Carré V.; Aubriet F.; Levillain E.; Allain M.; Voitenko Z.; Sallé M.; Goeb S. Metalla-Assembled Electron-Rich Tweezers: Redox-Controlled Guest Release Through Supramolecular Dimerization. Angew. Chem., Int. Ed. 2020, 59, 716–720. 10.1002/anie.201912016. - DOI - PubMed
- Knezevic M.; Heilmann M.; Piccini G. M.; Tiefenbacher K. Overriding Intrinsic Reactivity in Aliphatic C–H Oxidation: Preferential C3/C4 Oxidation of Aliphatic Ammonium Substrates. Angew. Chem., Int. Ed. 2020, 59, 12387–12391. 10.1002/anie.202004242. - DOI - PubMed
- Lindqvist M.; Borre K.; Axenov K.; Kótai B.; Nieger M.; Leskelä M.; Pápai I.; Repo T. Chiral Molecular Tweezers: Synthesis and Reactivity in Asymmetric Hydrogenation. J. Am. Chem. Soc. 2015, 137, 4038–4041. 10.1021/ja512658m. - DOI - PubMed
- Takeda M.; Hiroto S.; Yokoi H.; Lee S.; Kim D.; Shinokubo H. Azabuckybowl-Based Molecular Tweezers as C60 and C70 Receptors. J. Am. Chem. Soc. 2018, 140, 6336–6342. 10.1021/jacs.8b02327. - DOI - PubMed
- Doistau B.; Benda L.; Cantin J.-L.; Chamoreau L.-M.; Ruiz E.; Marvaud V.; Hasenknopf B.; Vives G. Six States Switching of Redox-Active Molecular Tweezers by Three Orthogonal Stimuli. J. Am. Chem. Soc. 2017, 139, 9213–9220. 10.1021/jacs.7b02945. - DOI - PubMed
- Mastalerz M. Single-Handed Towards Nanosized Organic Molecules. Angew. Chem., Int. Ed. 2016, 55, 45–47. 10.1002/anie.201509420. - DOI - PubMed
- Bier D.; Rose R.; Bravo-Rodriguez K.; Bartel M.; Ramirez-Anguita J. M.; Dutt S.; Wilch C.; Klärner F.-G.; Sanchez-Garcia E.; Schrader T.; Ottmann C. Molecular tweezers modulate 14–3-3 protein–protein interactions. Nat. Chem. 2013, 5, 234–239. 10.1038/nchem.1570. - DOI - PubMed
-
- Dalgarno S. J.; Power N. P.; Atwood J. L. Metallo-supramolecular capsules. Coord. Chem. Rev. 2008, 252, 825–841. 10.1016/j.ccr.2007.10.010. - DOI
- Catti L.; Zhang Q.; Tiefenbacher K. Advantages of Catalysis in Self-Assembled Molecular Capsules. Chem. - Eur. J. 2016, 22, 9060–9066. 10.1002/chem.201600726. - DOI - PubMed
- Ferrand Y.; Huc I. Designing Helical Molecular Capsules Based on Folded Aromatic Amide Oligomers. Acc. Chem. Res. 2018, 51, 970–977. 10.1021/acs.accounts.8b00075. - DOI - PubMed
- Jędrzejewska H.; Szumna A. Making a Right or Left Choice: Chiral Self-Sorting as a Tool for the Formation of Discrete Complex Structures. Chem. Rev. 2017, 117, 4863–4899. 10.1021/acs.chemrev.6b00745. - DOI - PubMed
- Szumna A. Inherently chiral concave molecules—from synthesis to applications. Chem. Soc. Rev. 2010, 39, 4274–4285. 10.1039/b919527k. - DOI - PubMed
- La Manna P.; Talotta C.; Floresta G.; De Rosa M.; Soriente A.; Rescifina A.; Gaeta C.; Neri P. Mild Friedel–Crafts Reactions inside a Hexameric Resorcinarene Capsule: C–Cl Bond Activation through Hydrogen Bonding to Bridging Water Molecules. Angew. Chem., Int. Ed. 2018, 57, 5423–5428. 10.1002/anie.201801642. - DOI - PubMed
- Riwar L.-J.; Trapp N.; Root K.; Zenobi R.; Diederich F. Supramolecular Capsules: Strong versus Weak Chalcogen Bonding. Angew. Chem., Int. Ed. 2018, 57, 17259–17264. 10.1002/anie.201812095. - DOI - PubMed
- Dumele O.; Trapp N.; Diederich F. Halogen Bonding Molecular Capsules. Angew. Chem., Int. Ed. 2015, 54, 12339–12344. 10.1002/anie.201502960. - DOI - PubMed
- Biros S. M.; Rebek J. Jr. Structure and binding properties of water-soluble cavitands and capsules. Chem. Soc. Rev. 2007, 36, 93–104. 10.1039/B508530F. - DOI - PubMed
- Yoshizawa M.; Catti L. Bent Anthracene Dimers as Versatile Building Blocks for Supramolecular Capsules. Acc. Chem. Res. 2019, 52, 2392–2404. 10.1021/acs.accounts.9b00301. - DOI - PubMed
-
- Nurttila S. S.; Linnebank P. R.; Krachko T.; Reek J. N. H. Supramolecular Approaches To Control Activity and Selectivity in Hydroformylation Catalysis. ACS Catal. 2018, 8, 3469–3488. 10.1021/acscatal.8b00288. - DOI - PMC - PubMed
- Jans A. C. H.; Caumes X.; Reek J. N. H. Gold Catalysis in (Supra)Molecular Cages to Control Reactivity and Selectivity. ChemCatChem 2019, 11, 287–297. 10.1002/cctc.201801399. - DOI - PMC - PubMed
- Ahmad N.; Younus H. A.; Chughtai A. H.; Verpoort F. Metal–organic molecular cages: applications of biochemical implications. Chem. Soc. Rev. 2015, 44, 9–25. 10.1039/C4CS00222A. - DOI - PubMed
- Jin Y.; Yu C.; Denman R. J.; Zhang W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 2013, 42, 6634–6654. 10.1039/c3cs60044k. - DOI - PubMed
- McConnell A. J.; Wood C. S.; Neelakandan P. P.; Nitschke J. R. Stimuli-Responsive Metal–Ligand Assemblies. Chem. Rev. 2015, 115, 7729–7793. 10.1021/cr500632f. - DOI - PubMed
- Han M.; Engelhard D. M.; Clever G. H. Self-assembled coordination cages based on banana-shaped ligands. Chem. Soc. Rev. 2014, 43, 1848–1860. 10.1039/C3CS60473J. - DOI - PubMed
- Amouri H.; Desmarets C.; Moussa J. Confined Nanospaces in Metallocages: Guest Molecules, Weakly Encapsulated Anions, and Catalyst Sequestration. Chem. Rev. 2012, 112, 2015–2041. 10.1021/cr200345v. - DOI - PubMed
- Holst J. R.; Trewin A.; Cooper A. I. Porous organic molecules. Nat. Chem. 2010, 2, 915–920. 10.1038/nchem.873. - DOI - PubMed
-
- Webb T. H.; Suh H.; Wilcox C. S. Chemistry of synthetic receptors and functional group arrays. 16. Enantioselective and diastereoselective molecular recognition of alicyclic substrates in aqueous media by a chiral, resolved synthetic receptor. J. Am. Chem. Soc. 1991, 113, 8554–8555. 10.1021/ja00022a070. - DOI
- Adrian J. C.; Wilcox C. S. Chemistry of synthetic receptors and functional group arrays. 10. Orderly functional group dyads. Recognition of biotin and adenine derivatives by a new synthetic host. J. Am. Chem. Soc. 1989, 111, 8055–8057. 10.1021/ja00202a078. - DOI
- Manjula A.; Nagarajan M. New supramolecular hosts: Synthesis and cation binding studies of novel Tröger’s base-crown ether composites. Tetrahedron 1997, 53, 11859–11868. 10.1016/S0040-4020(97)00759-X. - DOI
- Yuan C.; Zhang Y.; Xi H.; Tao X. An acidic pH fluorescent probe based on Tröger’s base. RSC Adv. 2017, 7, 55577–55581. 10.1039/C7RA11228A. - DOI
- Shanmugaraju S.; Dabadie C.; Byrne K.; Savyasachi A. J.; Umadevi D.; Schmitt W.; Kitchen J. A.; Gunnlaugsson T. A supramolecular Tröger’s base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water. Chem. Sci. 2017, 8, 1535–1546. 10.1039/C6SC04367D. - DOI - PMC - PubMed
- Delente J. M.; Umadevi D.; Shanmugaraju S.; Kotova O.; Watson G. W.; Gunnlaugsson T. Aggregation induced emission (AIE) active 4-amino-1,8-naphthalimide-Tröger’s base for the selective sensing of chemical explosives in competitive aqueous media. Chem. Commun. 2020, 56, 2562–2565. 10.1039/C9CC08457F. - DOI - PubMed
- Yuan C.; Li J.; Xi H.; Li Y. A sensitive pyridine-containing turn-off fluorescent probe for pH detection. Mater. Lett. 2019, 236, 9–12. 10.1016/j.matlet.2018.10.060. - DOI
- Aroche D. M. P.; Vargas J. P.; Nogara P. A.; da Silveira Santos F.; da Rocha J. B. T.; Lüdtke D. S.; Rodembusch F. S. Glycoconjugates Based on Supramolecular Tröger’s Base Scaffold: Synthesis, Photophysics, Docking, and BSA Association Study. ACS Omega 2019, 4, 13509–13519. 10.1021/acsomega.9b01857. - DOI - PMC - PubMed
- Trupp L.; Bruttomesso A. C.; Vardé M.; Eliseeva S. V.; Ramírez J. A.; Petoud S.; Barja B. C. Innovative Multipodal Ligands Derived from Tröger’s Bases for the Sensitization of Lanthanide(III) Luminescence. Chem. - Eur. J. 2020, 26, 16900–16909. 10.1002/chem.202003524. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous