Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Oct:280:130793.
doi: 10.1016/j.chemosphere.2021.130793. Epub 2021 May 6.

Biostimulation is a valuable tool to assess pesticide biodegradation capacity of groundwater microorganisms

Affiliations
Free article

Biostimulation is a valuable tool to assess pesticide biodegradation capacity of groundwater microorganisms

Andrea Aldas-Vargas et al. Chemosphere. 2021 Oct.
Free article

Abstract

Groundwater is the main source for drinking water production globally. Groundwater unfortunately can contain micropollutants (MPs) such as pesticides and/or pesticide metabolites. Biological remediation of MPs in groundwater requires an understanding of natural biodegradation capacity and the conditions required to stimulate biodegradation activity. Thus, biostimulation experiments are a valuable tool to assess pesticide biodegradation capacity of field microorganisms. To this end, groundwater samples were collected at a drinking water abstraction aquifer at two locations, five different depths. Biodegradation of the MPs BAM, MCPP and 2,4-D was assessed in microcosms with groundwater samples, either without amendment, or amended with electron acceptor (nitrate or oxygen) and/or carbon substrate (dissolved organic carbon (DOC)). Oxygen + DOC was the most successful amendment resulting in complete biodegradation of 2,4-D in all microcosms after 42 days. DOC was most likely used as a growth substrate that enhanced co-metabolic 2,4-D degradation with oxygen as electron acceptor. Different biodegradation rates were observed per groundwater sample. Overall, microorganisms from the shallow aquifer had faster biodegradation rates than those from the deep aquifer. Higher microbial activity was also observed in terms of CO2 production in the microcosms with shallow groundwater. Our results seem to indicate that shallow groundwater contains more active microorganisms, possibly due to their exposure to higher concentrations of both DOC and MPs. Understanding field biodegradation capacity is a key step towards developing further bioremediation-based technologies. Our results show that biostimulation has real potential as a technology for remediating MPs in aquifers in order to ensure safe drinking production.

Keywords: 2,4-D, Biodegradation; Biostimulation; Degradation capacity; Pesticides.

PubMed Disclaimer

LinkOut - more resources