Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun;594(7864):508-512.
doi: 10.1038/s41586-021-03576-2. Epub 2021 Jun 23.

Accurately computing the electronic properties of a quantum ring

C Neill  1 T McCourt  1 X Mi  1 Z Jiang  1 M Y Niu  1 W Mruczkiewicz  1 I Aleiner  1 F Arute  1 K Arya  1 J Atalaya  1 R Babbush  1 J C Bardin  1   2 R Barends  1 A Bengtsson  1 A Bourassa  1   3 M Broughton  1 B B Buckley  1 D A Buell  1 B Burkett  1 N Bushnell  1 J Campero  1 Z Chen  1 B Chiaro  1 R Collins  1 W Courtney  1 S Demura  1 A R Derk  1 A Dunsworth  1 D Eppens  1 C Erickson  1 E Farhi  1 A G Fowler  1 B Foxen  1 C Gidney  1 M Giustina  1 J A Gross  1 M P Harrigan  1 S D Harrington  1 J Hilton  1 A Ho  1 S Hong  1 T Huang  1 W J Huggins  1 S V Isakov  1 M Jacob-Mitos  1 E Jeffrey  1 C Jones  1 D Kafri  1 K Kechedzhi  1 J Kelly  1 S Kim  1 P V Klimov  1 A N Korotkov  1   4 F Kostritsa  1 D Landhuis  1 P Laptev  1 E Lucero  1 O Martin  1 J R McClean  1 M McEwen  1   5 A Megrant  1 K C Miao  1 M Mohseni  1 J Mutus  1 O Naaman  1 M Neeley  1 M Newman  1 T E O'Brien  1 A Opremcak  1 E Ostby  1 B Pató  1 A Petukhov  1 C Quintana  1 N Redd  1 N C Rubin  1 D Sank  1 K J Satzinger  1 V Shvarts  1 D Strain  1 M Szalay  1 M D Trevithick  1 B Villalonga  1 T C White  1 Z Yao  1 P Yeh  1 A Zalcman  1 H Neven  1 S Boixo  1 L B Ioffe  1 P Roushan  6 Y Chen  7 V Smelyanskiy  8
Affiliations

Accurately computing the electronic properties of a quantum ring

C Neill et al. Nature. 2021 Jun.

Abstract

A promising approach to study condensed-matter systems is to simulate them on an engineered quantum platform1-4. However, the accuracy needed to outperform classical methods has not been achieved so far. Here, using 18 superconducting qubits, we provide an experimental blueprint for an accurate condensed-matter simulator and demonstrate how to investigate fundamental electronic properties. We benchmark the underlying method by reconstructing the single-particle band structure of a one-dimensional wire. We demonstrate nearly complete mitigation of decoherence and readout errors, and measure the energy eigenvalues of this wire with an error of approximately 0.01 rad, whereas typical energy scales are of the order of 1 rad. Insight into the fidelity of this algorithm is gained by highlighting the robust properties of a Fourier transform, including the ability to resolve eigenenergies with a statistical uncertainty of 10-4 rad. We also synthesize magnetic flux and disordered local potentials, which are two key tenets of a condensed-matter system. When sweeping the magnetic flux we observe avoided level crossings in the spectrum, providing a detailed fingerprint of the spatial distribution of local disorder. By combining these methods we reconstruct electronic properties of the eigenstates, observing persistent currents and a strong suppression of conductance with added disorder. Our work describes an accurate method for quantum simulation5,6 and paves the way to study new quantum materials with superconducting qubits.

PubMed Disclaimer

References

    1. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982). - DOI
    1. Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995). - DOI
    1. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008). - DOI
    1. Georgescu, I., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153 (2014). - DOI
    1. Polkovnikov, A., Sengupta, K., Silva, A. & Vengalatorre, M. Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys., 83, 863 (2011). - DOI

LinkOut - more resources