Small peptide diversification through photoredox-catalyzed oxidative C-terminal modification
- PMID: 34164012
- PMCID: PMC8179259
- DOI: 10.1039/d0sc06180h
Small peptide diversification through photoredox-catalyzed oxidative C-terminal modification
Abstract
A photoredox-catalyzed oxidative decarboxylative coupling of small peptides is reported, giving access to a variety of N,O-acetals. They were used as intermediates for the addition of phenols and indoles, leading to novel peptide scaffolds and bioconjugates. Amino acids with nucleophilic side chains, such as serine, threonine, tyrosine and tryptophan, could also be used as partners to access tri- and tetrapeptide derivatives with non-natural cross-linking.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures




Similar articles
-
Photoredox Ni-catalyzed peptide C(sp2)-O cross-coupling: from intermolecular reactions to side chain-to-tail macrocyclization.Chem Sci. 2019 Apr 12;10(19):5073-5078. doi: 10.1039/c9sc00694j. eCollection 2019 May 21. Chem Sci. 2019. PMID: 31183058 Free PMC article.
-
Photoinduced C(sp3)-H Functionalization of Glycine Derivatives: Preparation of Unnatural α-Amino Acids and Late-Stage Modification of Peptides.Acc Chem Res. 2023 Aug 1;56(15):2110-2125. doi: 10.1021/acs.accounts.3c00260. Epub 2023 Jul 19. Acc Chem Res. 2023. PMID: 37467427
-
Late-Stage Functionalization of Arylacetic Acids by Photoredox-Catalyzed Decarboxylative Carbon-Heteroatom Bond Formation.Chemistry. 2018 Jul 2;24(37):9254-9258. doi: 10.1002/chem.201802143. Epub 2018 May 30. Chemistry. 2018. PMID: 29718551
-
Peptide macrocyclization by transition metal catalysis.Chem Soc Rev. 2020 Apr 7;49(7):2039-2059. doi: 10.1039/c9cs00366e. Chem Soc Rev. 2020. PMID: 32142086 Review.
-
Transition metal catalyzed methods for site-selective protein modification.Curr Opin Chem Biol. 2006 Jun;10(3):253-62. doi: 10.1016/j.cbpa.2006.04.009. Epub 2006 May 12. Curr Opin Chem Biol. 2006. PMID: 16698310 Review.
Cited by
-
"Cut and Paste" Processes in the Search of Bioactive Products: One-Pot, Metal-free O-Radical Scission-Oxidation-Addition of C, N or P-Nucleophiles.Front Chem. 2022 May 18;10:884124. doi: 10.3389/fchem.2022.884124. eCollection 2022. Front Chem. 2022. PMID: 35665068 Free PMC article. Review.
-
Hypervalent Iodine-Mediated Late-Stage Peptide and Protein Functionalization.Angew Chem Int Ed Engl. 2022 Feb 7;61(7):e202112287. doi: 10.1002/anie.202112287. Epub 2021 Dec 8. Angew Chem Int Ed Engl. 2022. PMID: 34674359 Free PMC article. Review.
-
Photoredox-Catalyzed Decarboxylative C-Terminal Differentiation for Bulk- and Single-Molecule Proteomics.ACS Chem Biol. 2021 Nov 19;16(11):2595-2603. doi: 10.1021/acschembio.1c00631. Epub 2021 Nov 4. ACS Chem Biol. 2021. PMID: 34734691 Free PMC article.
-
Facile Conversion of α-Amino Acids into α-Amino Phosphonates by Decarboxylative Phosphorylation using Visible-Light Photocatalysis.Angew Chem Int Ed Engl. 2022 Sep 12;61(37):e202207063. doi: 10.1002/anie.202207063. Epub 2022 Aug 4. Angew Chem Int Ed Engl. 2022. PMID: 35851520 Free PMC article.
References
-
- Fosgerau K. Hoffmann T. Drug Discov. Today. 2015;20:122–128. doi: 10.1016/j.drudis.2014.10.003. - DOI - PubMed
- Dang T. Süssmuth R. D. Acc. Chem. Res. 2017;50:1566–1576. doi: 10.1021/acs.accounts.7b00159. - DOI - PubMed
- Hamley I. W. Chem. Rev. 2017;117:14015–14041. doi: 10.1021/acs.chemrev.7b00522. - DOI - PubMed
- Henninot A. Collins J. C. Nuss J. M. J. Med. Chem. 2018;61:1382–1414. doi: 10.1021/acs.jmedchem.7b00318. - DOI - PubMed
-
- Ueda T. Biochim. Biophys. Acta Protein Proteonomics. 2014;1844:2053–2057. doi: 10.1016/j.bbapap.2014.06.008. - DOI - PubMed
- Drake P. M. Rabuka D. Curr. Opin. Chem. Biol. 2015;28:174–180. doi: 10.1016/j.cbpa.2015.08.005. - DOI - PubMed
- Cohen D. T. Zhang C. Fadzen C. M. Mijalis A. J. Hie L. Johnson K. D. Shriver Z. Plante O. Miller S. J. Buchwald S. L. Pentelute B. L. Nat. Chem. 2019;11:78–85. doi: 10.1038/s41557-018-0154-0. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources