Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jan 29;12(8):2735-2759.
doi: 10.1039/d0sc05555g.

Recent development in transition metal-catalysed C-H olefination

Affiliations
Review

Recent development in transition metal-catalysed C-H olefination

Wajid Ali et al. Chem Sci. .

Abstract

Transition metal-catalysed functionalizations of inert C-H bonds to construct C-C bonds represent an ideal route in the synthesis of valuable organic molecules. Fine tuning of directing groups, catalysts and ligands has played a crucial role in selective C-H bond (sp2 or sp3) activation. Recent developments in these areas have assured a high level of regioselectivity in C-H olefination reactions. In this review, we have summarized the recent progress in the oxidative olefination of sp2 and sp3 C-H bonds with special emphasis on distal, atroposelective, non-directed sp2 and directed sp3 C-H olefination. The scope, limitation, and mechanism of various transition metal-catalysed olefination reactions have been described briefly.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Direct C–H olefination reactions.
Fig. 2
Fig. 2. General mechanism for direct C–H olefination reactions.
Scheme 1
Scheme 1. Primary amine-directed ortho-C(sp2)–H olefination.
Scheme 2
Scheme 2. Pd-catalysed enantioselective C–H olefination of diaryl sulfoxides.
Scheme 3
Scheme 3. Pd-catalysed aryl C–H olefination with unbiased aliphatic alkenes.
Scheme 4
Scheme 4. Plausible mechanism for C–H olefination of phenylacetic amides.
Scheme 5
Scheme 5. Pd(ii)-catalysed olefination of benzyl phosphonamide.
Scheme 6
Scheme 6. Amide-directed ortho-C(sp2)–H olefination.
Scheme 7
Scheme 7. Pentafluoro benzoyl-directed olefination of benzylamine.
Scheme 8
Scheme 8. C(sp2)–H olefinations of 2-amino biaryls with vinylsilanes.
Scheme 9
Scheme 9. Enantioselective C(sp2)–H olefinations of ferrocene carboxylic acid.
Scheme 10
Scheme 10. Rh-catalysed N-Boc-directed ortho-olefinations of anilines.
Scheme 11
Scheme 11. Modified Rh(iii)-catalysed ortho-olefination of amides.
Scheme 12
Scheme 12. Ru(ii)-catalysed cyclisation of benzamides with activated alkenes.
Scheme 13
Scheme 13. Transient-directed ortho-C(sp2)–H olefinations of aldehydes.
Scheme 14
Scheme 14. Ru(ii)-catalysed enone carbonyl-directed olefination of chalcones.
Scheme 15
Scheme 15. Co(iii)-catalysed ortho-olefination of aromatic ketones.
Scheme 16
Scheme 16. Acylsilane-directed ortho-C(sp2)–H olefination.
Scheme 17
Scheme 17. Ru(ii)-catalysed olefination of α,β-unsaturated amides.
Scheme 18
Scheme 18. Proposed mechanism for Ru-catalysed olefination of α,β-unsaturated amides.
Scheme 19
Scheme 19. Rh-catalysed thioether & acetyl-directed C-4 olefination of indoles.
Scheme 20
Scheme 20. Rh-catalysed isoxazole-directed olefination of proximal aryl rings.
Scheme 21
Scheme 21. Chiral auxiliary-induced atroposelective C–H olefination.
Scheme 22
Scheme 22. Chiral Rh(i)-catalysed enantioselective C–H olefination.
Scheme 23
Scheme 23. Synthesis of axially chiral biaryls using a transient chiral auxiliary.
Scheme 24
Scheme 24. Proposed path involved in the transient chiral auxiliary catalysis.
Scheme 25
Scheme 25. Synthesis of axially chiral styrenes enabled by an amino amide transient directing group.
Scheme 26
Scheme 26. Boc-l-Val-OH ligand-assisted synthesis of chiral biaryl phosphine-olefins.
Scheme 27
Scheme 27. (R)-STRIP as an efficient chiral ligand for the synthesis of axially chiral quinoline biaryls.
Scheme 28
Scheme 28. Pd(ii)-catalysed free-amine-directed atroposelective C–H olefination.
Scheme 29
Scheme 29. meta-C–H olefination of toluenes and hydrocinnamic acids.
Scheme 30
Scheme 30. Pd-catalysed meta-selective C–H olefination of phenols.
Scheme 31
Scheme 31. Catalytic cycle of meta-C–H olefination.
Scheme 32
Scheme 32. Si-tethered nitrile-based directing group assisted meta-selective olefination of benzyl alcohol and toluene derivatives.
Scheme 33
Scheme 33. meta-Olefination of phenols using an organosilicon template.
Scheme 34
Scheme 34. meta-Olefination of benzylic phosphonate esters.
Scheme 35
Scheme 35. meta-Selective C–H olefination of phenylacetic acids.
Scheme 36
Scheme 36. Directed meta-olefination of alkylbenzene derivatives.
Scheme 37
Scheme 37. meta-C–H-olefination of biphenyl carboxylic acids and phenols.
Scheme 38
Scheme 38. meta-Selective C–H olefination of amines and heteroaromatics.
Scheme 39
Scheme 39. meta-Selective olefination of indoline derivatives.
Scheme 40
Scheme 40. meta-C–H olefination of arenes across different linker lengths.
Scheme 41
Scheme 41. Directing group-assisted meta-C–H olefination of benzoic acids.
Scheme 42
Scheme 42. Triazine linked template-assisted meta-olefination of phenols.
Scheme 43
Scheme 43. Acetal or ketal linker-assisted meta-C–H olefination of arene-tethered diols and aldehydes or ketones.
Scheme 44
Scheme 44. Carboxy group directed meta-C–H olefination of alkylbenzenes.
Scheme 45
Scheme 45. meta-Olefination of aryl boronic acids directed by MIDA-derived boronate ester.
Scheme 46
Scheme 46. Imine as a transient-directing group for meta-C–H olefination.
Scheme 47
Scheme 47. para-Olefination of toluenes and phenols using a biphenyl director.
Scheme 48
Scheme 48. Possible catalytic cycle for para C–H olefination.
Scheme 49
Scheme 49. Bifunctional template assisted site-selective C–H olefination.
Scheme 50
Scheme 50. C–H olefination of heterocycles with bi- and tridentate templates.
Scheme 51
Scheme 51. C-5 selective olefination of thiazoles with a bifunctional template.
Scheme 52
Scheme 52. Pd-catalysed olefination of arenes using 2,6-dialkylpyridine ligand.
Scheme 53
Scheme 53. Rh-catalysed olefination of bromoarenes with styrene derivatives.
Scheme 54
Scheme 54. S,O-Ligand-promoted Pd-catalysed olefination of arenes.
Scheme 55
Scheme 55. 2-Pyridone ligand-enabled Pd-catalysed olefination of arenes.
Scheme 56
Scheme 56. Amide-directed Pd-catalysed olefination of β-C(sp3)–H bonds.
Scheme 57
Scheme 57. Pd-catalysed C(sp3)–H olefination of the amino acid alanine.
Scheme 58
Scheme 58. Pd-catalysed olefination of β-C(sp3)–H bonds.
Scheme 59
Scheme 59. Ligand-enabled β-C(sp3)–H olefination of free carboxylic acids.
Scheme 60
Scheme 60. Carbonyl coordination of native amides in β-C(sp3)–H olefination.
Scheme 61
Scheme 61. Stereo-retentive olefination of the β-C(sp3)–H bond of alanine with vinyl iodides.
Scheme 62
Scheme 62. Pd-catalysed enantioselective C–H alkenylation of isobutyric acid.
Scheme 63
Scheme 63. Pd-catalysed β-C(sp3)–H alkenylation with alkenyl bromides.
Scheme 64
Scheme 64. Enantioselective C(sp3)–H olefination of the cyclobutyl ring.
Scheme 65
Scheme 65. Ni-catalysed β-C(sp3)–H alkenylation with alkenyl iodide.
Scheme 66
Scheme 66. Ligand-enabled construction of β-quaternary carbon centres.
Scheme 67
Scheme 67. γ-C(sp3)–h olefination of Tf and Ns-protected α-amino acids and alkyl amine.
Scheme 68
Scheme 68. Pd-catalysed γ-C(sp3)–H olefination with activated alkenes.
Scheme 69
Scheme 69. Proposed mechanism for Pd-catalysed γ-C(sp3)–H olefination.
Scheme 70
Scheme 70. Pd-catalysed γ-C(sp3)–H olefination of primary amino alcohols.
Scheme 71
Scheme 71. Ligand induced γ-C(sp3)–H olefination of aliphatic amines.
Scheme 72
Scheme 72. Ligand-enabled γ-C(sp3)–H olefination of free carboxylic acids.
Scheme 73
Scheme 73. L,X-type directing group-assisted C–H olefination of ketones.
Scheme 74
Scheme 74. Pd-catalysed radical relay Heck reaction.
None
Wajid Ali
None
Gaurav Prakash
None
Debabrata Maiti

Similar articles

Cited by

References

    1. McMurray L. O'Hara F. Gaunt M. J. Chem. Soc. Rev. 2011;40:1885–1898. - PubMed
    2. Fox J. C. Gilligan R. E. Pitts A. K. Bennett H. R. Gaunt M. J. Chem. Sci. 2016;7:2706–2710. - PMC - PubMed
    3. Hartwig J. F. J. Am. Chem. Soc. 2016;138:2–24. - PMC - PubMed
    4. Cernak T. Dykstra K. D. Tyagarajan S. Vachal P. Krska S. W. Chem. Soc. Rev. 2016;45:546–576. - PubMed
    5. Blakemore D. C. Castro L. Churcher I. Rees D. C. Thomas A. W. Wilson D. M. Wood A. Nat. Chem. 2018;10:383–394. - PubMed
    1. Ma W. Gandeepan P. Lid J. Ackermann L. Org. Chem. Front. 2017;4:1435–1467.
    2. Kozhushkov S. I. Ackermann L. Chem. Sci. 2013;4:886–896.
    3. Wedi P. van Gemmeren M. Angew. Chem., Int. Ed. 2018;57:13016–13027. - PubMed
    4. Dey A. Sinha S. K. Achar T. K. Maiti D. Angew. Chem., Int. Ed. 2019;58:10820–10843. - PubMed
    5. Deb A. Maiti D. Eur. J. Org. Chem. 2017:1239–1252.
    6. Bag S. Maiti D. Synthesis. 2016;48:804–815.
    7. Manikandana R. Jeganmohan M. Chem. Commun. 2017;53:8931–8947. - PubMed
    8. Rej S. Ano Y. Chatani N. Chem. Rev. 2020;120:1788–1887. - PubMed
    1. Nguyen P.-H. Yang J.-L. Uddin M. N. Park S.-L. Lim S.-I. Jung D.-W. Williams D. R. Oh W.-K. J. Nat. Prod. 2013;76:2080–2087. - PubMed
    2. Cheel J. Theoduloz C. Rodríguez J. Saud G. Caligari P. D. S. Schmeda-Hirschmann G. J. Agric. Food Chem. 2005;53:8512–8518. - PubMed
    1. Singh R. S. P. Michel D. Das U. Dimmock J. R. Alcorn J. Bioorg. Med. Chem. Lett. 2014;24:5199–5202. - PubMed
    2. Chuprajob T. Changtam C. Chokchaisiri R. Chunglok W. Sornkaew N. Suksamrarn A. Bioorg. Med. Chem. Lett. 2014;24:2839–2844. - PubMed
    1. Wencel-Delord J. Glorius F. Nat. Chem. 2013;5:369–375. - PubMed
    2. Grimsdale A. C. Leok Chan K. Martin R. E. Jokisz P. G. Holmes A. B. Chem. Rev. 2009;109:897–1091. - PubMed
    3. Silva Paula M. M. Franco C. V. Baldin M. C. Rodrigues L. Barichello T. Savi G. D. Bellato L. F. Fiori M. A. Silva L. Mater. Sci. Eng., C. 2009;29:647–650.