Self-programmed enzyme phase separation and multiphase coacervate droplet organization
- PMID: 34164043
- PMCID: PMC8179374
- DOI: 10.1039/d0sc06418a
Self-programmed enzyme phase separation and multiphase coacervate droplet organization
Abstract
Membraneless organelles are phase-separated droplets that are dynamically assembled and dissolved in response to biochemical reactions in cells. Complex coacervate droplets produced by associative liquid-liquid phase separation offer a promising approach to mimic such dynamic compartmentalization. Here, we present a model for membraneless organelles based on enzyme/polyelectrolyte complex coacervates able to induce their own condensation and dissolution. We show that glucose oxidase forms coacervate droplets with a cationic polysaccharide on a narrow pH range, so that enzyme-driven monotonic pH changes regulate the emergence, growth, decay and dissolution of the droplets depending on the substrate concentration. Significantly, we demonstrate that time-programmed coacervate assembly and dissolution can be achieved in a single-enzyme system. We further exploit this self-driven enzyme phase separation to produce multiphase droplets via dynamic polyion self-sorting in the presence of a secondary coacervate phase. Taken together, our results open perspectives for the realization of programmable synthetic membraneless organelles based on self-regulated enzyme/polyelectrolyte complex coacervation.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



Similar articles
-
Reversible photocontrol of DNA coacervation.Methods Enzymol. 2021;646:329-351. doi: 10.1016/bs.mie.2020.06.013. Epub 2020 Jul 10. Methods Enzymol. 2021. PMID: 33453931
-
Membraneless Compartmentalization Facilitates Enzymatic Cascade Reactions and Reduces Substrate Inhibition.ACS Appl Mater Interfaces. 2018 Sep 26;10(38):32782-32791. doi: 10.1021/acsami.8b07573. Epub 2018 Sep 14. ACS Appl Mater Interfaces. 2018. PMID: 30179001 Free PMC article.
-
Programmable Coacervate Droplets via Reaction-Coupled Liquid-Liquid Phase Separation (LLPS) and Competitive Inhibition.J Am Chem Soc. 2025 May 14;147(19):16027-16037. doi: 10.1021/jacs.4c17063. Epub 2025 Mar 20. J Am Chem Soc. 2025. PMID: 40112030
-
Coacervate Droplets for Synthetic Cells.Small Methods. 2023 Dec;7(12):e2300496. doi: 10.1002/smtd.202300496. Epub 2023 Jul 18. Small Methods. 2023. PMID: 37462244 Review.
-
Peptide-based coacervates in therapeutic applications.Front Bioeng Biotechnol. 2023 Jan 4;10:1100365. doi: 10.3389/fbioe.2022.1100365. eCollection 2022. Front Bioeng Biotechnol. 2023. PMID: 36686257 Free PMC article. Review.
Cited by
-
Phase Transitions in Chemically Fueled, Multiphase Complex Coacervate Droplets.Angew Chem Int Ed Engl. 2022 Nov 14;61(46):e202211905. doi: 10.1002/anie.202211905. Epub 2022 Oct 18. Angew Chem Int Ed Engl. 2022. PMID: 36067054 Free PMC article.
-
Designing negative feedback loops in enzymatic coacervate droplets.Chem Sci. 2023 Apr 19;14(18):4735-4744. doi: 10.1039/d2sc03838b. eCollection 2023 May 10. Chem Sci. 2023. PMID: 37181760 Free PMC article.
-
Coacervate Droplets as Biomimetic Models for Designing Cell-Like Microreactors.Macromol Rapid Commun. 2024 Dec;45(24):e2400626. doi: 10.1002/marc.202400626. Epub 2024 Nov 26. Macromol Rapid Commun. 2024. PMID: 39588807 Free PMC article. Review.
-
Coacervates as enzymatic microreactors.Chem Soc Rev. 2025 May 6;54(9):4183-4199. doi: 10.1039/d4cs01203h. Chem Soc Rev. 2025. PMID: 40084439 Free PMC article. Review.
-
Biomimetic Materials to Fabricate Artificial Cells.Chem Rev. 2024 Dec 11;124(23):13178-13215. doi: 10.1021/acs.chemrev.4c00241. Epub 2024 Nov 26. Chem Rev. 2024. PMID: 39591535 Free PMC article. Review.
References
LinkOut - more resources
Full Text Sources