Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Dec 28;12(8):2890-2897.
doi: 10.1039/d0sc05924b.

Mangana(iii/iv)electro-catalyzed C(sp3)-H azidation

Affiliations

Mangana(iii/iv)electro-catalyzed C(sp3)-H azidation

Tjark H Meyer et al. Chem Sci. .

Abstract

Manganaelectro-catalyzed azidation of otherwise inert C(sp3)-H bonds was accomplished using most user-friendly sodium azide as the nitrogen-source. The operationally simple, resource-economic C-H azidation strategy was characterized by mild reaction conditions, no directing group, traceless electrons as the sole redox-reagent, Earth-abundant manganese as the catalyst, high functional-group compatibility and high chemoselectivity, setting the stage for late-stage azidation of bioactive compounds. Detailed mechanistic studies by experiment, spectrophotometry and cyclic voltammetry provided strong support for metal-catalyzed aliphatic radical formation, along with subsequent azidyl radical transfer within a manganese(iii/iv) manifold.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Manganaelectro-catalyzed azidation.
Scheme 2
Scheme 2. Proof of concept electro C(sp3)–H azidation.
Scheme 3
Scheme 3. Reaction scope of manganaelectro-catalyzed C(sp3)–H azidation. [a] Standard conditions: substrate (0.5 mmol), NaN3 (4.0 mmol), [Mn2] (2.5 or 5.0 mol%), LiClO4 (0.5 mmol), MeCN/AcOH (5 mL, 1 : 1), a nitrogen atmosphere, 10 h, 25 °C, and constant current electrolysis at 8.0 mA in an undivided cell. All yields are isolated products; ratios for site-selectivity are determined by 1H-NMR of the crude mixture. [b] At 50 °C. [c] 3,4-Dihydronaphthalen-1(2H)-one 3 was detected in 10% from crude 1H-NMR with 1,3,5-trimethoxy benzene as the internal standard. [d] Standard conditions for 20 h.
Scheme 4
Scheme 4. Gram-scale manganaelectro-catalyzed C–H azidation (4.30 F).
Scheme 5
Scheme 5. Mechanistic investigation of manganaelectro-catalyzed azidation of unactivated C(sp3)–H bonds. (a) Radical trap experiments. (b) Competition experiment. (c) Kinetic experiments. (d) Chronoamperometric studies at 0.8 V vs. Ag/Ag+. (e) Stoichiometric synthesis of well-defined manganese(iii) azide and manganese(iv) diazide complexes. (f) UV-vis spectroscopic studies: (i) MeCN (0.04 mM) was used as the solvent at 25 °C. (ii) MeCN/AcOH (1 : 1, 0.05 mM) was used as the solvent at 25 °C.
Scheme 6
Scheme 6. Cyclic voltammetry: MeCN (0.3 mm) and LiClO4 (0.1 m) was used as the electrolyte and Ag/AgCl (3 M) as the reference electrode, at 25 °C and a scanning rate of 100 mV s−1.
Fig. 1
Fig. 1. Proposed mechanism for manganaelectro-catalyzed C(sp3)–H azidation.

References

    1. Khake S. M. Chatani N. Trends Chem. 2019;1:524. doi: 10.1016/j.trechm.2019.06.002. - DOI
    2. Gandeepan P. Müller T. Zell D. Cera G. Warratz S. Ackermann L. Chem. Rev. 2019;119:2192. doi: 10.1021/acs.chemrev.8b00507. - DOI - PubMed
    3. Chu J. C. K. Rovis T. Angew. Chem., Int. Ed. 2018;57:62. doi: 10.1002/anie.201703743. - DOI - PMC - PubMed
    4. He J. Wasa M. Chan K. S. L. Shao Q. Yu J.-Q. Chem. Rev. 2017;117:8754. doi: 10.1021/acs.chemrev.6b00622. - DOI - PMC - PubMed
    5. Hartwig J. F. Larsen M. A. ACS Cent. Sci. 2016;2:281. doi: 10.1021/acscentsci.6b00032. - DOI - PMC - PubMed
    6. White M. C. Science. 2012;335:807. doi: 10.1126/science.1207661. - DOI - PubMed
    7. Brückl T. Baxter R. D. Ishihara Y. Baran P. S. Acc. Chem. Res. 2012;45:826. doi: 10.1021/ar200194b. - DOI - PMC - PubMed
    8. Lyons T. W. Sanford M. S. Chem. Rev. 2010;110:1147. doi: 10.1021/cr900184e. - DOI - PMC - PubMed
    9. Satoh T. Miura M. Chem.–Eur. J. 2010;16:11212. doi: 10.1002/chem.201001363. - DOI - PubMed
    10. Bergman R. G. Nature. 2007;446:391. doi: 10.1038/446391a. - DOI - PubMed
    11. Labinger J. A. Bercaw J. E. Nature. 2002;417:507. doi: 10.1038/417507a. - DOI - PubMed
    1. Laudadio G. Deng Y. van der Wal K. Ravelli D. Nuño M. Fagnoni M. Guthrie D. Sun Y. Noël T. Science. 2020;369:92. doi: 10.1126/science.abb4688. - DOI - PubMed
    2. Bunescu A. Lee S. Li Q. Hartwig J. F. ACS Cent. Sci. 2017;3:895. doi: 10.1021/acscentsci.7b00255. - DOI - PMC - PubMed
    3. Pouliot J.-R. Grenier F. Blaskovits J. T. Beaupré S. Leclerc M. Chem. Rev. 2016;116:14225. doi: 10.1021/acs.chemrev.6b00498. - DOI - PubMed
    4. Schipper D. J. Fagnou K. Chem. Mater. 2011;23:1594. doi: 10.1021/cm103483q. - DOI
    1. Baudoin O. Angew. Chem., Int. Ed. 2020;59:17798. doi: 10.1002/anie.202001224. - DOI - PubMed
    2. Hili R. Yudin A. K. Nat. Chem. Biol. 2006;2:284. doi: 10.1038/nchembio0606-284. - DOI - PubMed
    1. Börgel J. Ritter T. Chem. 2020;6:1877. doi: 10.1016/j.chempr.2020.07.007. - DOI
    2. Wu F. Zhang J. Song F. Wang S. Guo H. Wei Q. Dai H. Chen X. Xia X. Liu X. Zhang L. Yu J.-Q. Lei X. ACS Cent. Sci. 2020;6:928. doi: 10.1021/acscentsci.0c00122. - DOI - PMC - PubMed
    3. Wang W. Lorion M. M. Shah J. Kapdi A. R. Ackermann L. Angew. Chem., Int. Ed. 2018;57:14700. doi: 10.1002/anie.201806250. - DOI - PubMed
    4. Cernak T. Dykstra K. D. Tyagarajan S. Vachal P. Krska S. W. Chem. Soc. Rev. 2016;45:546. doi: 10.1039/C5CS00628G. - DOI - PubMed
    5. Noisier A. F. M. Brimble M. A. Chem. Rev. 2014;114:8775. doi: 10.1021/cr500200x. - DOI - PubMed
    1. For selected examples, see:

    2. Singh R. Mukherjee A. ACS Catal. 2019;9:3604. doi: 10.1021/acscatal.9b00009. - DOI
    3. Clark J. R. Feng K. Sookezian A. White M. C. Nat. Chem. 2018;10:583. doi: 10.1038/s41557-018-0020-0. - DOI - PMC - PubMed
    4. Paradine S. M. Griffin J. R. Zhao J. Petronico A. L. Miller S. M. Christina White M. Nat. Chem. 2015;7:987. doi: 10.1038/nchem.2366. - DOI - PMC - PubMed
    5. McNally A. Haffemayer B. Collins B. S. L. Gaunt M. J. Nature. 2014;510:129. doi: 10.1038/nature13389. - DOI - PubMed
    6. Jeffrey J. L. Sarpong R. Chem. Sci. 2013;4:4092. doi: 10.1039/C3SC51420J. - DOI
    7. Roizen J. L. Harvey M. E. Du Bois J. Acc. Chem. Res. 2012;45:911. doi: 10.1021/ar200318q. - DOI - PMC - PubMed
    8. Collet F. Dodd R. H. Dauban P. Chem. Commun. 2009:5061. doi: 10.1039/B905820F. - DOI - PubMed
    9. Davies H. M. L. Long M. S. Angew. Chem., Int. Ed. 2005;44:3518. doi: 10.1002/anie.200500554. - DOI - PubMed
    10. Yu X.-Q. Huang J.-S. Zhou X.-G. Che C.-M. Org. Lett. 2000;2:2233. doi: 10.1021/ol000107r. - DOI - PubMed