Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan 8;12(8):2909-2915.
doi: 10.1039/d0sc06471h.

Boosting homogeneous chemoselective hydrogenation of olefins mediated by a bis(silylenyl)terphenyl-nickel(0) pre-catalyst

Affiliations

Boosting homogeneous chemoselective hydrogenation of olefins mediated by a bis(silylenyl)terphenyl-nickel(0) pre-catalyst

Marcel-Philip Lücke et al. Chem Sci. .

Abstract

The isolable chelating bis(N-heterocyclic silylenyl)-substituted terphenyl ligand [SiII(Terp)SiII] as well as its bis(phosphine) analogue [PIII(Terp)PIII] have been synthesised and fully characterised. Their reaction with Ni(cod)2 (cod = cycloocta-1,5-diene) affords the corresponding 16 VE nickel(0) complexes with an intramolecular η 2-arene coordination of Ni, [E(Terp)E]Ni(η 2-arene) (E = PIII, SiII; arene = phenylene spacer). Due to a strong cooperativity of the Si and Ni sites in H2 activation and H atom transfer, [SiII(Terp)SiII]Ni(η 2-arene) mediates very effectively and chemoselectively the homogeneously catalysed hydrogenation of olefins bearing functional groups at 1 bar H2 pressure and room temperature; in contrast, the bis(phosphine) analogous complex shows only poor activity. Catalytic and stoichiometric experiments revealed the important role of the η2-coordination of the Ni(0) site by the intramolecular phenylene with respect to the hydrogenation activity of [SiII(Terp)SiII]Ni(η 2-arene). The mechanism has been established by kinetic measurements, including kinetic isotope effect (KIE) and Hammet-plot correlation. With this system, the currently highest performance of a homogeneous nickel-based hydrogenation catalyst of olefins (TON = 9800, TOF = 6800 h-1) could be realised.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. A phenylene-bridged bis(NHSi) ligand.
Scheme 1
Scheme 1. Synthesis of 2 and 3 and their nickel(0) complexes 4 and 5, respectively.
Fig. 2
Fig. 2. Molecular structure of bis(NHSi) 3 at 50% probability level. Hydrogen and solvent atoms are omitted for clarity. Selected distances [Å]: Si1–N1 1.887(3), Si1–N2 1.864(3), C9–C9′ 1.388(6), C8–C9 1.397(4).
Fig. 3
Fig. 3. Molecular structures of 4 (top) and 5 (bottom) at 50% probability level. Hydrogen and solvent atoms are omitted for clarity. 4: Selected bond lengths [Å]: P1–Ni1 2.1579(2), P2–Ni1 2.1461(4), Ni1–C1 1.9921(15), Ni1–C2 2.0041(15), C1–C6 1.423(2). Selected bond angle [°]: P1–Ni1–P1 131.004(18). 5: Selected bond lengths [Å]: Si1–Ni1 2.20(4), Si2–Ni1 2.224(3), Ni1–C1 2.053(18), Ni1–C6 1.996(18), C1–C6 1.442(12), C1–C2 1.46(2), C2–C3 1.313(18). Selected bond angle [°]: Si1–Ni1–Si2 147.67(11).
Scheme 2
Scheme 2. Proposed structure of the dihydrido Ni(ii) complex 5-H2.
Fig. 4
Fig. 4. 1H NMR spectra of the hydride region at variable temperature of a sample of 5 + H2 in a sealed Young NMR tube.
Fig. 5
Fig. 5. Generated Hammet-plot from the hydrogenation of para substituted styrene derivatives.

References

    1. de Vries J. G. and Elsevier C. J., The Handbook of Homogeneous Hydrogenations, Wiley-VCH, Weinheim, 2007
    2. For Rh catalysts, see:

    3. Knowles W. S. Angew. Chem., Int. Ed. 2002;41:1998. doi: 10.1002/1521-3773(20020617)41:12<1998::AID-ANIE1998>3.0.CO;2-8. - DOI - PubMed
    4. For iridium catalysts, see:

    5. Crabtree R. Acc. Chem. Res. 1979;12:331. doi: 10.1002/1521-3773(20020617)41:12<1998::AID-ANIE1998>3.0.CO;2-8. - DOI
    6. Crabtree R. H. Platinum Met. Rev. 1978;22(4):126. doi: 10.1002/1521-3773(20020617)41:12<1998::AID-ANIE1998>3.0.CO;2-8. - DOI
    7. For Ru catalysts, see:

    8. Noyori R. Angew. Chem., Int. Ed. 2002;41:2008. doi: 10.1002/1521-3773(20020617)41:12<1998::AID-ANIE1998>3.0.CO;2-8. - DOI - PubMed
    1. For cobalt catalysts, see:

    2. Friedfeld M. R. Shelvin M. Hoyt J. M. Krska S. W. Tudge M. T. Chirik P. J. Science. 2013;342:1976. doi: 10.1126/science.1243550. - DOI - PubMed
    3. Friedfeld M. R. Margulieux G. W. Schaefer B. A. Chirik P. J. J. Am. Chem. Soc. 2014;136:13178. doi: 10.1126/science.1243550. - DOI - PubMed
    4. For Fe catalyst, see:

    5. Bauer I. Knoelker H.-J. Chem. Rev. 2015;115(9):3170. doi: 10.1126/science.1243550. - DOI - PubMed
    6. Fürstner A. ACS. Cent. Sci. 2016;2(11):778. doi: 10.1126/science.1243550. - DOI - PMC - PubMed
    1. Crabtree R. H., The Organometallic Chemistry of the Transition Metals, John Wiley & Sons, New York, 2009
    1. For isolable N-heterocyclic silylenes, see:

    2. So C.-W. Roesky H. W. Magull J. Oswald R. B. Angew. Chem., Int. Ed. 2006;45:3948. doi: 10.1039/D0CS00815J. - DOI - PubMed
    3. Sen S. S. Roesky H. W. Stern D. Henn J. Stalke D. J. Am. C. Soc. 2010;132:1123. doi: 10.1039/D0CS00815J. - DOI - PubMed
    4. Asay M. Jones C. Driess M. Chem. Rev. 2011;111:354. doi: 10.1039/D0CS00815J. - DOI - PubMed
    5. for NHSi-TM coordination chemistry and catalysis, see:

    6. Blom B. Stoelzel M. Driess M. Chem.–Eur. J. 2013;19:40. doi: 10.1039/D0CS00815J. - DOI - PubMed
    7. Silylenes in catalysis, see:

    8. Blom B. Gallego D. Driess M. Chem. Soc. Rev. 2020;49:6733–6754. doi: 10.1039/D0CS00815J. - DOI - PubMed
    9. Raufmoghaddam S. Zhou Y.-P. Wang Y. Driess M. J. Organomet. Chem. 2017;2:829. doi: 10.1039/D0CS00815J. - DOI
    10. Zhou Y.-P. Driess M. Angew. Chem., Int. Ed. 2019;58:3715. doi: 10.1039/D0CS00815J. - DOI - PubMed
    11. Shan C. Yao S. Driess M. Chem. Soc. Rev. 2020 doi: 10.1039/d0cs00815j. doi: 10.1039/D0CS00815J. - DOI - DOI - PubMed
    1. Benedek Z. Szilvàsi T. RSC Adv. 2015;5:5077. doi: 10.1039/C4RA14417A. - DOI