Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 May;9(10):915.
doi: 10.21037/atm-20-6264.

Molecular landscape of head and neck cancer and implications for therapy

Affiliations
Review

Molecular landscape of head and neck cancer and implications for therapy

Camile S Farah. Ann Transl Med. 2021 May.

Abstract

Head and neck squamous cell carcinomas (HNSCC) arising from the oral cavity, pharynx, and larynx constitute the 6th most common human cancer. Human papillomavirus (HPV)-positive tumours are distinct from HPV-negative counterparts, with HPV status affording clear clinical utility, prognostic benefit and better treatment outcomes. In contrast to their HPV-positive counterparts, HPV-negative tumours are characterized by high mutational load and chromosomal aberrations, with varying copy number alteration (CNA) profiles. HNSCC are distinct tumours at the chromosomal, gene and expression levels, with additional insight gained from immune profiling. Based on mutational analyses, HNSCC are categorized as HPV-positive, HPV-negative CNA-silent, and HPV-negative CNA-high tumours. Furthermore, gene expression profiling segregates these tumours into atypical, classical, basal, and mesenchymal, with clear differences observed between tumours of the oral cavity, oropharynx, hypopharynx and larynx. Additional immune profiling further classifies tumours as either immune-active or immune-exhausted. The clinical utility and impact of these tumour molecular subtypes however remains to be determined. HNSCC harbor high levels of somatic mutations. They display loss at 3p and 18q and gain at 3q and 8q, with mutations in CDKN2A, TP53, CCND1, EGFR, PIK3CA, PTEN, NOTCH1, NSD1, FAT1, AJUBA and KMT2D. Important pathways include the p53 and RB pathways which are involved in cell cycle control and are frequently lost in HPV-negative tumours, the WNT-β-catenin pathway related to the mesenchymal subtype and smoking etiology, and the PI3K pathway which includes the most common genetic alteration in HPV-positive HNSCC. Understanding the mutational, genomic and transcriptomic landscape of HNSCC has leveraged better therapeutic approaches to manage this group of diseases, and it is hoped that additional insight into the molecular subtypes of HNSCC and its specific subsites will further drive improved strategies to stratify and treat patients with this debilitating disease.

Keywords: Head and neck cancer; molecular landscape; oral cancer; squamous cell carcinoma; therapy.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: The author has completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/atm-20-6264). The series “Head and Neck Cancers – Disease Biology, Diagnostics, Prevention and Management” was commissioned by the editorial office without any funding or sponsorship. The author has no conflicts of interest to declare.

Figures

Figure 1
Figure 1
Composite schematic depicting the molecular landscape of head and neck squamous cell carcinoma. Tumours are grouped according to CNA alterations, gene mutations and gene expression profiles summarized from various studies described in this review. Only the most pertinent and discriminatory chromosomal, gene and immune profiles are highlighted. Based on mutational analyses, HNSCC are characterized as HPV-positive, HPV-negative CNA-silent, and HPV-negative CNA-high tumours. Furthermore, gene expression profiling segregates these tumours into atypical, basal, classical and mesenchymal, with clear differences observed between tumours of different anatomical sites and proposed etiology. Additional immune profiling further classifies tumours as either immune-active or immune-exhausted. The clinical utility and impact of these molecular tumour subtypes remains to be determined.

Similar articles

Cited by

References

    1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424. 10.3322/caac.21492 - DOI - PubMed
    1. Hashibe M, Boffetta P, Zaridze D, et al. Contribution of tobacco and alcohol to the high rates of squamous cell carcinoma of the supraglottis and glottis in central Europe. Am J Epidemiol 2007;165:814-20. 10.1093/aje/kwk066 - DOI - PubMed
    1. Hashibe M, Brennan P, Benhamou S, et al. Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: Pooled analysis in the international head and neck cancer epidemiology consortium. J Natl Cancer Inst 2007; 99:777-89. 10.1093/jnci/djk179 - DOI - PubMed
    1. Chung CH, Parker JS, Karaca G, et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell 2004; 5:489-500. 10.1016/S1535-6108(04)00112-6 - DOI - PubMed
    1. Dahlstrom KR, Little JA, Zafereo ME, et al. Squamous cell carcinoma of the head and neck in never smoker-never drinkers: A descriptive epidemiologic study. Head Neck 2008;30:75-84. 10.1002/hed.20664 - DOI - PubMed