Liposomes and Extracellular Vesicles as Drug Delivery Systems: A Comparison of Composition, Pharmacokinetics, and Functionalization
- PMID: 34165909
- PMCID: PMC11468589
- DOI: 10.1002/adhm.202100639
Liposomes and Extracellular Vesicles as Drug Delivery Systems: A Comparison of Composition, Pharmacokinetics, and Functionalization
Abstract
Over the past decades, lipid-based nanoparticle drug delivery systems (DDS) have caught the attention of researchers worldwide, encouraging the field to rapidly develop improved ways for effective drug delivery. One of the most prominent examples is liposomes, which are spherical shaped artificial vesicles composed of lipid bilayers and able to encapsulate both hydrophilic and hydrophobic materials. At the same time, biological nanoparticles naturally secreted by cells, called extracellular vesicles (EVs), have emerged as promising more complex biocompatible DDS. In this review paper, the differences and similarities in the composition of both vesicles are evaluated, and critical mediators that affect their pharmacokinetics are elucidate. Different strategies that have been assessed to tweak the pharmacokinetics of both liposomes and EVs are explored, detailing the effects on circulation time, targeting capacity, and cytoplasmic delivery of therapeutic cargo. Finally, whether a hybrid system, consisting of a combination of only the critical constituents of both vesicles, could offer the best of both worlds is discussed. Through these topics, novel leads for further research are provided and, more importantly, gain insight in what the liposome field and the EV field can learn from each other.
Keywords: biodistribution; cellular uptake; targeting moiety incorporation; therapeutic cargo delivery; vesicle functionalization.
© 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
-
A Comparison of Cellular Uptake Mechanisms, Delivery Efficacy, and Intracellular Fate between Liposomes and Extracellular Vesicles.Adv Healthc Mater. 2023 Oct;12(25):e2300319. doi: 10.1002/adhm.202300319. Epub 2023 Jul 9. Adv Healthc Mater. 2023. PMID: 37384827 Free PMC article. Review.
-
Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems.ACS Nano. 2018 Jul 24;12(7):6830-6842. doi: 10.1021/acsnano.8b02053. Epub 2018 Jul 10. ACS Nano. 2018. PMID: 29975503
-
Systematic review of targeted extracellular vesicles for drug delivery - Considerations on methodological and biological heterogeneity.J Control Release. 2019 Jul 28;306:108-120. doi: 10.1016/j.jconrel.2019.06.006. Epub 2019 Jun 5. J Control Release. 2019. PMID: 31175896
-
Extracellular vesicles as drug delivery systems: lessons from the liposome field.J Control Release. 2014 Dec 10;195:72-85. doi: 10.1016/j.jconrel.2014.07.049. Epub 2014 Aug 2. J Control Release. 2014. PMID: 25094032 Review.
-
Functional siRNA Delivery by Extracellular Vesicle-Liposome Hybrid Nanoparticles.Adv Healthc Mater. 2022 Mar;11(5):e2101202. doi: 10.1002/adhm.202101202. Epub 2021 Aug 11. Adv Healthc Mater. 2022. PMID: 34382360 Free PMC article.
Cited by
-
Different pathways for engulfment and endocytosis of liquid droplets by nanovesicles.Nat Commun. 2023 Feb 4;14(1):615. doi: 10.1038/s41467-023-35847-z. Nat Commun. 2023. PMID: 36739277 Free PMC article.
-
Influence of Extracellular Vesicles on Lung Stromal Cells during Breast Cancer Metastasis.Int J Mol Sci. 2023 Jul 22;24(14):11801. doi: 10.3390/ijms241411801. Int J Mol Sci. 2023. PMID: 37511559 Free PMC article. Review.
-
Innovative Approaches to Enhancing the Biomedical Properties of Liposomes.Pharmaceutics. 2024 Nov 27;16(12):1525. doi: 10.3390/pharmaceutics16121525. Pharmaceutics. 2024. PMID: 39771504 Free PMC article. Review.
-
Synthesis and Characterization of Transferrin and Cell-Penetrating Peptide-Functionalized Liposomal Nanoparticles to Deliver Plasmid ApoE2 In Vitro and In Vivo in Mice.Mol Pharm. 2025 Jan 6;22(1):229-241. doi: 10.1021/acs.molpharmaceut.4c00870. Epub 2024 Dec 12. Mol Pharm. 2025. PMID: 39665408 Free PMC article.
-
Resistive-Pulse Sensing Coupled with Fluorescence Lifetime Imaging Microscopy for Differentiation of Individual Liposomes.ACS Nano. 2025 Jan 21;19(2):2162-2170. doi: 10.1021/acsnano.4c10813. Epub 2025 Jan 1. ACS Nano. 2025. PMID: 39741459
References
-
- Doyle L. M., Wang M. Z., Cells 2019, 8, 727. - PubMed
-
- a) Thery C., Witwer K. W., Aikawa E., Alcaraz M. J., Anderson J. D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin‐Smith G. K., Ayre D. C., Bach J. M., Bachurski D., Baharvand H., Balaj L., Baldacchino S., Bauer N. N., Baxter A. A., Bebawy M., Beckham C., Zavec A. B., Benmoussa A., Berardi A. C., Bergese P., Bielska E., Blenkiron C., Bobis‐Wozowicz S., Boilard E., Boireau W., Bongiovanni A., et al., J. Extracell. Vesicles 2018, 7, 1535750; - PMC - PubMed
- b) Witwer K. W., Thery C., J. Extracell. Vesicles 2019, 8, 1648167. - PMC - PubMed
-
- Elsharkasy O. M., Nordin J. Z., Hagey D. W., de Jong O. G., Schiffelers R. M., Andaloussi S. E., Vader P., Adv. Drug Delivery Rev. 2020, 159, 332. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous