Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 18;12(14):5209-5215.
doi: 10.1039/d0sc06576e.

Cleavable and tunable cysteine-specific arylation modification with aryl thioethers

Affiliations

Cleavable and tunable cysteine-specific arylation modification with aryl thioethers

Jian Li et al. Chem Sci. .

Abstract

Cysteine represents an attractive target for peptide/protein modification due to the intrinsic high nucleophilicity of the thiol group and low natural abundance. Herein, a cleavable and tunable covalent modification approach for cysteine containing peptides/proteins with our newly designed aryl thioethers via a S N Ar approach was developed. Highly efficient and selective bioconjugation reactions can be carried out under mild and biocompatible conditions. A series of aryl groups bearing different bioconjugation handles, affinity or fluorescent tags are well tolerated. By adjusting the skeleton and steric hindrance of aryl thioethers slightly, the modified products showed a tunable profile for the regeneration of the native peptides.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. (A) Representative reagents for Cys modification based on nucleophilic aromatic substitution. (B) Representative cleavable cysteine specific modification reagents. (C) Cleavable and tunable cysteine arylation strategy via a SNAr mechanism.
Fig. 2
Fig. 2. Substrate scope of cysteine arylation. Unless otherwise specified, all reactions were carried out with 1.0 μmol 1a and 3 μmol 2 in 1 mL 100 mM Tris buffer (pH 8.0, 1% v/v DMSO) at room temperature for 1 h. Reported yields are LC-MS yields. aThe reaction was analysed after 5 min. bThe reaction was analysed after 5 h. c5% DMSO was added.
Fig. 3
Fig. 3. Substrate scope of cysteine-containing peptides. Unless otherwise specified, all reactions were carried out with 1.0 μmol 1a and 3 μmol 2 in 1 mL 100 mM Tris buffer (pH 8.0, 1% v/v DMSO) at room temperature for 1 h. Reported yields are LC-MS yields after 1 h. aThe reaction was analysed after 5 min. b5% DMSO was added.
Fig. 4
Fig. 4. (A) Regeneration activity evaluation of modified peptides. Reported yields are LC-MS yields of 1a regenerated from 3 with βME after 1 h. (The yields in parentheses correspond to the yields of 1a regenerated from 3 with GSH after 1 h). (B) Substrate scope of peptide regeneration. Reported yields are LC-MS yields of peptides 1 regenerated from 2j and 2ad modified peptides 3 with βME after 1 h.
Fig. 5
Fig. 5. (A) BSA modification with 2v. (B) ESI-MS spectra of native BSA and modified BSA-2v proteins. (C) Secondary labeling of modified peptide 3ss.

References

    1. Spicer C. D. Davis B. G. Nat. Commun. 2014;5:4740. - PubMed
    2. Boutureira O. Bernardes G. J. Chem. Rev. 2015;115:2174–2195. - PubMed
    3. deGruyter J. N. Malins L. R. Baran P. S. Biochemistry. 2017;56:3863–3873. - PMC - PubMed
    4. Krall N. da Cruz F. P. Boutureira O. Bernardes G. J. Nat. Chem. 2016;8:103–113. - PubMed
    5. Milroy L.-G. Grossmann T. N. Hennig S. Brunsveld L. Ottmann C. Chem. Rev. 2014;114:4695–4748. - PubMed
    6. Hoyt E. A. Cal P. M. S. D. Oliveira B. L. Bernardes G. J. L. Nat. Rev. Chem. 2019;3:147–171.
    7. Li X. Chen S. Zhang W.-D. Hu H.-G. Chem. Rev. 2020;120:10079–10144. - PubMed
    1. Hackenberger C. P. Schwarzer D. Angew. Chem., Int. Ed. 2008;47:10030–10074. - PubMed
    2. Wang W. Lorion M. M. Shah J. Kapdi A. R. Ackermann L. Angew. Chem., Int. Ed. 2018;57:14700–14717. - PubMed
    3. Hu Q.-L. Hou K.-Q. Li J. Ge Y. Song Z.-D. Chan A. S. C. Xiong X.-F. Chem. Sci. 2020;11:6070–6074. - PMC - PubMed
    4. Vantourout J. C. Adusumalli S. R. Knouse K. W. Flood D. T. Ramirez A. Padial N. M. Istrate A. Maziarz K. deGruyter J. N. Merchant R. R. Qiao J. X. Schmidt M. A. Deery M. J. Eastgate M. D. Dawson P. E. Bernardes G. J. L. Baran P. S. J. Am. Chem. Soc. 2020;142:17236–17242. - PMC - PubMed
    1. Adusumalli S. R. Rawale D. G. Singh U. Tripathi P. Paul R. Kalra N. Mishra R. K. Shukla S. Rai V. J. Am. Chem. Soc. 2018;140:15114–15123. - PubMed
    2. Matos M. J. Oliveira B. L. Martínez-Sáez N. Guerreiro A. Cal P. M. S. D. Bertoldo J. Maneiro M. Perkins E. Howard J. Deery M. J. Chalker J. M. Corzana F. Jiménez-Osés G. Bernardes G. J. L. J. Am. Chem. Soc. 2018;140:4004–4017. - PMC - PubMed
    3. Noisier A. F. M. Johansson M. J. Knerr L. Hayes M. A. Drury III W. J. Valeur E. Malins L. R. Gopalakrishnan R. Angew. Chem., Int. Ed. 2019;58:19096–19102. - PubMed
    4. Luo Q. Tao Y. Sheng W. Lu J. Wang H. Nat. Commun. 2019;10:142. - PMC - PubMed
    5. Reddy N. C. Kumar M. Molla R. Rai V. Org. Biomol. Chem. 2020;18:4669–4691. - PubMed
    1. Marino S. M. Gladyshev V. N. J. Mol. Biol. 2010;404:902–916. - PMC - PubMed
    2. Lo Conte M. Staderini S. Marra A. Sanchez-Navarro M. Davis B. G. Dondoni A. Chem. Commun. 2011;47:11086–11088. - PubMed
    3. Abegg D. Frei R. Cerato L. Prasad Hari D. Wang C. Waser J. Adibekian A. Angew. Chem., Int. Ed. 2015;54:10852–10857. - PubMed
    4. Abbas A. Xing B. Loh T.-P. Angew. Chem., Int. Ed. 2014;53:7491–7494. - PubMed
    1. Hemantha H. P. Bavikar S. N. Herman-Bachinsky Y. Haj-Yahya N. Bondalapati S. Ciechanover A. Brik A. J. Am. Chem. Soc. 2014;136:2665–2673. - PubMed