Cleavable and tunable cysteine-specific arylation modification with aryl thioethers
- PMID: 34168774
- PMCID: PMC8179606
- DOI: 10.1039/d0sc06576e
Cleavable and tunable cysteine-specific arylation modification with aryl thioethers
Abstract
Cysteine represents an attractive target for peptide/protein modification due to the intrinsic high nucleophilicity of the thiol group and low natural abundance. Herein, a cleavable and tunable covalent modification approach for cysteine containing peptides/proteins with our newly designed aryl thioethers via a S N Ar approach was developed. Highly efficient and selective bioconjugation reactions can be carried out under mild and biocompatible conditions. A series of aryl groups bearing different bioconjugation handles, affinity or fluorescent tags are well tolerated. By adjusting the skeleton and steric hindrance of aryl thioethers slightly, the modified products showed a tunable profile for the regeneration of the native peptides.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures





References
-
- Spicer C. D. Davis B. G. Nat. Commun. 2014;5:4740. - PubMed
- Boutureira O. Bernardes G. J. Chem. Rev. 2015;115:2174–2195. - PubMed
- deGruyter J. N. Malins L. R. Baran P. S. Biochemistry. 2017;56:3863–3873. - PMC - PubMed
- Krall N. da Cruz F. P. Boutureira O. Bernardes G. J. Nat. Chem. 2016;8:103–113. - PubMed
- Milroy L.-G. Grossmann T. N. Hennig S. Brunsveld L. Ottmann C. Chem. Rev. 2014;114:4695–4748. - PubMed
- Hoyt E. A. Cal P. M. S. D. Oliveira B. L. Bernardes G. J. L. Nat. Rev. Chem. 2019;3:147–171.
- Li X. Chen S. Zhang W.-D. Hu H.-G. Chem. Rev. 2020;120:10079–10144. - PubMed
-
- Hackenberger C. P. Schwarzer D. Angew. Chem., Int. Ed. 2008;47:10030–10074. - PubMed
- Wang W. Lorion M. M. Shah J. Kapdi A. R. Ackermann L. Angew. Chem., Int. Ed. 2018;57:14700–14717. - PubMed
- Hu Q.-L. Hou K.-Q. Li J. Ge Y. Song Z.-D. Chan A. S. C. Xiong X.-F. Chem. Sci. 2020;11:6070–6074. - PMC - PubMed
- Vantourout J. C. Adusumalli S. R. Knouse K. W. Flood D. T. Ramirez A. Padial N. M. Istrate A. Maziarz K. deGruyter J. N. Merchant R. R. Qiao J. X. Schmidt M. A. Deery M. J. Eastgate M. D. Dawson P. E. Bernardes G. J. L. Baran P. S. J. Am. Chem. Soc. 2020;142:17236–17242. - PMC - PubMed
-
- Adusumalli S. R. Rawale D. G. Singh U. Tripathi P. Paul R. Kalra N. Mishra R. K. Shukla S. Rai V. J. Am. Chem. Soc. 2018;140:15114–15123. - PubMed
- Matos M. J. Oliveira B. L. Martínez-Sáez N. Guerreiro A. Cal P. M. S. D. Bertoldo J. Maneiro M. Perkins E. Howard J. Deery M. J. Chalker J. M. Corzana F. Jiménez-Osés G. Bernardes G. J. L. J. Am. Chem. Soc. 2018;140:4004–4017. - PMC - PubMed
- Noisier A. F. M. Johansson M. J. Knerr L. Hayes M. A. Drury III W. J. Valeur E. Malins L. R. Gopalakrishnan R. Angew. Chem., Int. Ed. 2019;58:19096–19102. - PubMed
- Luo Q. Tao Y. Sheng W. Lu J. Wang H. Nat. Commun. 2019;10:142. - PMC - PubMed
- Reddy N. C. Kumar M. Molla R. Rai V. Org. Biomol. Chem. 2020;18:4669–4691. - PubMed
-
- Marino S. M. Gladyshev V. N. J. Mol. Biol. 2010;404:902–916. - PMC - PubMed
- Lo Conte M. Staderini S. Marra A. Sanchez-Navarro M. Davis B. G. Dondoni A. Chem. Commun. 2011;47:11086–11088. - PubMed
- Abegg D. Frei R. Cerato L. Prasad Hari D. Wang C. Waser J. Adibekian A. Angew. Chem., Int. Ed. 2015;54:10852–10857. - PubMed
- Abbas A. Xing B. Loh T.-P. Angew. Chem., Int. Ed. 2014;53:7491–7494. - PubMed
-
- Hemantha H. P. Bavikar S. N. Herman-Bachinsky Y. Haj-Yahya N. Bondalapati S. Ciechanover A. Brik A. J. Am. Chem. Soc. 2014;136:2665–2673. - PubMed
LinkOut - more resources
Full Text Sources
Research Materials