Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul 7;13(26):31102-31110.
doi: 10.1021/acsami.1c05833. Epub 2021 Jun 25.

Highly Transparent, Stretchable, and Conducting Ionoelastomers Based on Poly(ionic liquid)s

Affiliations

Highly Transparent, Stretchable, and Conducting Ionoelastomers Based on Poly(ionic liquid)s

Xiaoqing Ming et al. ACS Appl Mater Interfaces. .

Abstract

The rapid development of soft electronics has revitalized the research of conducting elastomers. However, the design of conducting elastomers having high stretchability and good transparency still remains a considerable challenge. In this study, we develop a highly transparent, stretchable, and conducting ionoelastomer based on a poly(ionic liquid) in which cations are fixed to a stretchable elastomeric network and counter anions are mobile. The ionoelastomer solves the dilemma of simultaneous transparency and stretchability in the design of traditional conducting elastomers, possessing good transparency (96%) with an extraordinarily high stretchability, up to a limiting strain of 1460%. Moreover, this novel material is completely nonvolatile and nonhygroscopic, endowing the ionoelastomer with highly stable thermal, environmental, electrochemical, and mechanoelectrical properties. An underwater sensor based on the ionoelastomer is developed with good performance in an aqueous environment. Also, a transparent dielectric elastomer actuator (DEA) is demonstrated using the ionoelastomer. It is believed that the ionoelastomer would pave the way to develop exceptional conducting elastomers toward next-generation soft electronics.

Keywords: conducting elastomer; ionoelastomer; poly(ionic liquid); sensor and actuator; transparent and stretchable.

PubMed Disclaimer

LinkOut - more resources