The impact of transcription factors Znf1, Sip4, Adr1, Tup1, and Hap4 on xylose alcoholic fermentation in the engineered yeast Saccharomyces cerevisiae
- PMID: 34170419
- DOI: 10.1007/s10482-021-01607-6
The impact of transcription factors Znf1, Sip4, Adr1, Tup1, and Hap4 on xylose alcoholic fermentation in the engineered yeast Saccharomyces cerevisiae
Abstract
Lignocellulosic biomass is an attractive sustainable platform for fuel ethanol production. Xylose is a second after glucose most abounded sugar in lignocellulosic hydrolysates. Effective conversion of xylose to ethanol is one of key prerequisite for the development of an efficient conversion of biomass to ethanol. Engineered Saccharomyces cerevisiae strains are able to xylose fermentation. However, the yield and productivities of xylose fermentation remains lower in comparison with glucose fermentation. In this work, we studied impact of transcription factors Znf1, Sip4, Adr1, Tup1, and Hap4 on xylose catabolism. We have isolated znf1Δ, adr1Δ, tup1Δ and hap4Δ mutants, and strains overexpressing SIP4, ADR1 and HAP4 genes on the background of xylose-fermenting strain of S. cerevisiae aiming to explore involvement of these transcription factors in regulation of xylose growth and fermentation. It was shown that hap4Δ reveal 1.8-fold increase of ethanol production from xylose as compared to that of parental strain. The hap4Δ mutant accumulates 10.38 g l-1 of ethanol with an overall ethanol yield reaching 0.41 g g-1 of consumed xylose. While the other constructed strains revealed a decrease in ethanol production from this pentose.
Keywords: Alcoholic fermentation; S. cerevisiae; Transcription factors; Xylose.
© 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Similar articles
-
The role of Mig1, Mig2, Tup1 and Hap4 transcription factors in regulation of xylose and glucose fermentation in the thermotolerant yeast Ogataea polymorpha.FEMS Yeast Res. 2021 May 18;21(4):foab029. doi: 10.1093/femsyr/foab029. FEMS Yeast Res. 2021. PMID: 33983391
-
Activation of cryptic xylose metabolism by a transcriptional activator Znf1 boosts up xylitol production in the engineered Saccharomyces cerevisiae lacking xylose suppressor BUD21 gene.Microb Cell Fact. 2022 Mar 5;21(1):32. doi: 10.1186/s12934-022-01757-w. Microb Cell Fact. 2022. PMID: 35248023 Free PMC article.
-
The role of peroxisomes in xylose alcoholic fermentation in the engineered Saccharomyces cerevisiae.Cell Biol Int. 2020 Aug;44(8):1606-1615. doi: 10.1002/cbin.11353. Epub 2020 Apr 13. Cell Biol Int. 2020. PMID: 32227552
-
Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives.Appl Microbiol Biotechnol. 2009 Aug;84(1):37-53. doi: 10.1007/s00253-009-2101-x. Epub 2009 Jul 2. Appl Microbiol Biotechnol. 2009. PMID: 19572128 Review.
-
Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.Biotechnol Adv. 2013 Nov;31(6):851-61. doi: 10.1016/j.biotechadv.2013.03.004. Epub 2013 Mar 21. Biotechnol Adv. 2013. PMID: 23524005 Review.
Cited by
-
The role of hexose transporter-like sensor hxs1 and transcription activator involved in carbohydrate sensing azf1 in xylose and glucose fermentation in the thermotolerant yeast Ogataea polymorpha.Microb Cell Fact. 2022 Aug 13;21(1):162. doi: 10.1186/s12934-022-01889-z. Microb Cell Fact. 2022. PMID: 35964033 Free PMC article.
-
Xylitol bioproduction by Candida tropicalis: effects of glucose/xylose ratio and pH on fermentation and gene expression.Braz J Microbiol. 2025 Mar;56(1):105-116. doi: 10.1007/s42770-024-01564-y. Epub 2024 Nov 19. Braz J Microbiol. 2025. PMID: 39562490
-
Possible regulatory network and associated pathways governing the expression of ADH2 in Saccharomyces cerevisiae.Curr Genet. 2025 Aug 18;71(1):15. doi: 10.1007/s00294-025-01321-0. Curr Genet. 2025. PMID: 40824391 Review.
-
An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae.PeerJ. 2023 Nov 28;11:e16340. doi: 10.7717/peerj.16340. eCollection 2023. PeerJ. 2023. PMID: 38047029 Free PMC article. Review.
-
Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels.Bioengineered. 2022 Apr;13(4):8135-8163. doi: 10.1080/21655979.2022.2051856. Bioengineered. 2022. PMID: 35297313 Free PMC article. Review.
References
-
- Cunha JT, Costa CE, Ferraz L, Romaní A, Johansson B, Sá-Correia I, Domingues L (2018) HAA1 PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Appl Microbiol Biotechnol 102:4589–4600. https://doi.org/10.1007/s00253-018-8955-z - DOI - PubMed
-
- Dikicioglu D, Pir P, Onsan ZI, Ulgen KO, Kirdar B, Oliver SG (2008) Integration of metabolic modeling phenotypic data in evaluation improvement of ethanol production using respiration-deficient mutants of Saccharomyces cerevisiae. Appl Environ Microbiol 74:5809–5816. https://doi.org/10.1128/AEM.00009-08 - DOI - PubMed - PMC
-
- Dudley AM, Janse DM, Tanay A, Shamir R, Church GM (2005) A global view of pleiotropy phenotypically derived gene function in yeast. Mol Syst Biol 1(2005):0001. https://doi.org/10.1038/msb4100004 - DOI - PubMed
-
- Dzanaeva L, Kruk B, Ruchala J, Nielsen J, Sibirny A, Dmytruk K (2020a) The role of peroxisomes in xylose alcoholic fermentation in the engineered Saccharomyces cerevisiae. Cell Biol Int 44:1606–1615. https://doi.org/10.1002/cbin.11353 - DOI - PubMed
-
- Dzanaeva L, Ruchala J, Sibirny A, Dmytruk K (2020b) The impact of transcriptional factors Znf1 Sip4 on xylose alcoholic fermentation in recombinant strains of yeast Saccharomyces cerevisiae. Cytol Genet 54:386–392. https://doi.org/10.3103/S0095452720050035 - DOI
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases