Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan;21(1):97-104.
doi: 10.1109/TNB.2021.3092292. Epub 2021 Dec 30.

Miniaturized and IoT Enabled Continuous-Flow-Based Microfluidic PCR Device for DNA Amplification

Miniaturized and IoT Enabled Continuous-Flow-Based Microfluidic PCR Device for DNA Amplification

Madhusudan B Kulkarni et al. IEEE Trans Nanobioscience. 2022 Jan.

Abstract

Herein, a continuous-flow driven microfluidic device has been designed and fabricated using the CO2 laser ablation method for polymerase chain reaction (PCR). The device consists of a polymethyl methacrylate (PMMA) microfluidic channel with 30 serpentine thermal cycles, an arduino board, two custom-made cartridge heaters, and thermocouple sensors. The portable thermal management system, with aluminium blocks placed on a wooden substrate, working on the PID controller principle, is low-cost, battery-powered, automated, integrated, and IoT-enabled. The device with dimensions 80×72×36 mm3 (L × W × H) has a temperature accuracy of ±0.2 °C. The IoT module enables accessing and storage of real-time temperature values directly onto the smartphone through ThingSpeak analytics. It was developed to achieve desirable accurate temperature at two thermal zones, denaturation and annealing (95 °C and 60 °C) on the microfluidic thermal management platform. A PCR mixture of [Formula: see text] was infused into the serpentine-based microchannel using a syringe pump. Amplification of DNA template with 594-base pair (bp) fragment of the rat GAPDH gene was successfully performed on the miniaturized thermal management system. The total time required for a complete PCR reaction was 32 min at an optimum flow rate of [Formula: see text]/min. The amplified sample of the target DNA obtained from the PCR microchannel was then separated by agarose gel electrophoresis and was further analyzed using a gel-doc system. Finally, the obtained results were compared to the conventional PCR instrument showing excellent performance.

PubMed Disclaimer

Publication types

LinkOut - more resources