Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jun 25;4(1):798.
doi: 10.1038/s42003-021-02237-4.

Immunological considerations and challenges for regenerative cellular therapies

Affiliations
Review

Immunological considerations and challenges for regenerative cellular therapies

Sandra Petrus-Reurer et al. Commun Biol. .

Abstract

The central goal of regenerative medicine is to replace damaged or diseased tissue with cells that integrate and function optimally. The capacity of pluripotent stem cells to produce unlimited numbers of differentiated cells is of considerable therapeutic interest, with several clinical trials underway. However, the host immune response represents an important barrier to clinical translation. Here we describe the role of the host innate and adaptive immune responses as triggers of allogeneic graft rejection. We discuss how the immune response is determined by the cellular therapy. Additionally, we describe the range of available in vitro and in vivo experimental approaches to examine the immunogenicity of cellular therapies, and finally we review potential strategies to ameliorate immune rejection. In conclusion, we advocate establishment of platforms that bring together the multidisciplinary expertise and infrastructure necessary to comprehensively investigate the immunogenicity of cellular therapies to ensure their clinical safety and efficacy.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. The innate Immune system.
NK cell activation or inactivation following activating or inhibiting receptor-target cell ligand signaling. A mismatched/lack of HLA-I-Antigen complex is a strong NK cell-activating signal. Once activated, a cytotoxic response will follow mainly through granule release. HLA: human leukocyte antigen, NK: natural killer.
Fig. 2
Fig. 2. The adaptive immune system.
Illustration representing the three different pathways of allorecognition. The direct pathway of allorecognition typically involves recognition of intact HLA-I or -II-Antigen complexes expressed by donor DC (i.e., APC)/cellular therapies by recipient CD4+ or CD8+ cells, respectively, usually leading to acute graft rejection. T cells with direct allospecificity are present in all individuals at very high frequency and this pathway is thought to play a major role immediately following transplantation. The indirect pathway of allorecognition involves processing and presentation of donor HLA molecules by recipient DC (i.e., APC) to recipient CD4+ T cells, which then provide help for CD8+ T cell-mediated cytotoxic killing and antibody production by B cells. The frequency of T cells with indirect allospecificity is undetectable but increases with time from the transplant. In line with this, this pathway was thought to be the most relevant for graft rejection late post-transplant. The semi-direct pathway involves the transfer of intact donor-derived HLA molecules to recipient APC leading to CD8+ or CD4+ T cell activation. This latter pathway implies that the direct pathway of allorecognition lasts for longer than what was initially thought and indicates that the same recipient DC can present directly and indirectly donor HLA molecules to host T cells. In all pathways, the activated recipient CD4+ T cells provide help for activation of cytotoxic CD8+ T cells which kill donor cells by binding to allo-HLA-I on their surface then leading to cellular-mediated rejection of cellular therapy (typically acute reaction). In addition, activated CD4+ T cells will trigger the innate immune system, inflammation, and B cell maturation into plasma cells that will produce allo-antigen specific antibodies which will lead to an antibody-mediated rejection of the cellular therapy (typically chronic rejection). Cellular therapy: refers to an HLA-II expressing target cell, DC: dendritic cell, TCR: T cell receptor, HLA: human leukocyte antigen, NK: natural killer.
Fig. 3
Fig. 3. Humanized mice models for the in vivo immunological assessment of cellular therapies.
Illustration representing the methodologies behind current humanized mice models highlighting the advantages (check) and disadvantages (cross) of each model. The models include: the human peripheral blood lymphocytes (Hu-PBL-SCID) in which most of the engrafting cells are human T cells that express an activated phenotype while few B cells or myeloid cells engraft. One caveat is that these mice will develop a xenogeneic graft-versus-host disease (xeno-GVHD) that results in death, but xeno-GVHD can be delayed using immunodeficient mice lacking mouse MHC class I or class II; the human stem cell repopulating cell (Hu-SRC-SCID), which is established by engraftment of human hematopoietic stem cells (HSC) derived from bone marrow, umbilical cord blood, fetal liver, or mobilized peripheral blood HSC. Engrafting mature adult immunodeficient IL2rγ null mice with HSC permits the generation of multiple hematopoietic cell lineages but few T cells while human T cells are readily generated following engraftment of newborn or 3–4 week-old NSG and NOG mice with HSC; the SCID-HU, which is established by implantation of human fetal liver and thymus fragments under the renal capsule of immunodeficient mice and a major limitation is the paucity of human hematopoietic and immune cells in the peripheral tissues; and the bone marrow, liver, thymus (BLT), which is established by implantation of human fetal liver and thymus fragments under the renal capsule of sublethally irradiated immunodeficient mice accompanied by intravenous injection of autologous fetal liver HSC. The use of immunodeficient NOD-scid mice to establish the BLT model led to human immune system engrafted mice, which is further enhanced by the engraftment of NSG mice. A complete hematopoietic and immune system develops, and the human T cells are educated on a human thymus and are HLA-restricted. IP: intraperitoneal, IV: intravenous, IS: intrasplenic, IF: intrafemoral, IC: intracardiac, IH: intrahepatic, GvHd: graft versus host disease.
Fig. 4
Fig. 4. Immunological confounders of cellular therapies.
Illustration representing the immunological confounders involved in cellular therapies including factors concerning various aspects of the cell therapy (e.g., cell source, differentiation protocol, cell type/function, specific maturation state of the cell product), the recipient’s transplantation site, and the limitations inherent to in vitro and in vivo experimental platforms. Overall these factors might trigger different degrees of rejection in the patient that will receive the cellular therapy, therefore limiting its efficacy.

Similar articles

Cited by

References

    1. Blau HM, Daley GQ. Stem cells in the treatment of disease. N. Engl. J. Med. 2019;380:1748–1760. doi: 10.1056/NEJMra1716145. - DOI - PubMed
    1. Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. - DOI - PubMed
    1. Park I-H, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451:141–146. doi: 10.1038/nature06534. - DOI - PubMed
    1. Zhao T, Zhang Z-N, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474:212–215. doi: 10.1038/nature10135. - DOI - PubMed
    1. Guha P, Morgan JW, Mostoslavsky G, Rodrigues NP, Boyd AS. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell. 2013;12:407–412. doi: 10.1016/j.stem.2013.01.006. - DOI - PubMed

Publication types